
Information and Inference: A Journal of the IMA (2023) 12, 1–51
https://doi.org/10.1093/imaiai/iaad032

Spectral top-down recovery of latent tree models

Yariv Aizenbud∗ and Ariel Jaffe
Program in Applied Mathematics, Yale University, New Haven, CT 06511, USA

∗Corresponding author. Email: yariv.aizenbud@yale.edu

Meng Wang
Department of Pathology, Yale University, New Haven, CT 06511, USA

Amber Hu and Noah Amsel
Program in Applied Mathematics, Yale University, New Haven, CT 06511, USA

Boaz Nadler
Department of Computer Science, Weizmann Institute of Science, Rehovot 76100, Israel

Joseph T. Chang
Department of Statistics, Yale University, New Haven, CT 06520, USA

and

Yuval Kluger
Program in Applied Mathematics, Yale University, New Haven, CT 06511, USA

Department of Pathology, Yale University, New Haven, CT 06511, USA
Interdepartmental Program in Computational Biology and Bioinformatics, Yale University,

New Haven, CT 06511, USA

[Received on 10 December 2021; revised on 24 March 2023; accepted on 24 June 2023]

Modeling the distribution of high-dimensional data by a latent tree graphical model is a prevalent approach
in multiple scientific domains. A common task is to infer the underlying tree structure, given only
observations of its terminal nodes. Many algorithms for tree recovery are computationally intensive, which
limits their applicability to trees of moderate size. For large trees, a common approach, termed divide-and-
conquer, is to recover the tree structure in two steps. First, separately recover the structure of multiple,
possibly random subsets of the terminal nodes. Second, merge the resulting subtrees to form a full tree.
Here, we develop spectral top-down recovery (STDR), a deterministic divide-and-conquer approach to
infer large latent tree models. Unlike previous methods, STDR partitions the terminal nodes in a non
random way, based on the Fiedler vector of a suitable Laplacian matrix related to the observed nodes.
We prove that under certain conditions, this partitioning is consistent with the tree structure. This, in turn,
leads to a significantly simpler merging procedure of the small subtrees. We prove that STDR is statistically
consistent and bound the number of samples required to accurately recover the tree with high probability.
Using simulated data from several common tree models in phylogenetics, we demonstrate that STDR has
a significant advantage in terms of runtime, with improved or similar accuracy.
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2 Y. AIZENBUD ET AL.

1. Introduction

Learning the structure of latent tree graphical models is a common task in machine learning [4, 10, 23,
42, 63] and computational biology [29, 30]. A canonical application is phylogenetics, where the task is to
infer the evolutionary tree that describes the relationship between a group of biological species based on
their nucleotide or protein sequences [18, 43, 48]. Depending on the application, the number of observed
nodes ranges from a dozen and up to tens of thousands.

In latent tree graphical models, every node is associated with a random variable. A key assumption is
that the given data corresponds to the terminal nodes of a tree, while the set of unobserved internal nodes
determines its distribution. In phylogenetics, the terminal nodes are existing organisms, while the non-
terminal nodes correspond to their extinct ancestors. Given a set of nucleotide or amino acid sequences
as in Figure 1, the task is to recover the structure of the tree, which describes how the observed organisms
evolved from their ancestors.

Many algorithms have been developed for recovering latent trees. Distance-based methods, including
the classic neighbour joining (NJ) [46] and UPGMA [50], recover the tree based on a distance measure
between all pairs of terminal nodes. These methods are computationally efficient and thus applicable to
large trees [57], and also have theoretical recovery guarantees [5, 36]. Since the distance measure does
not encapsulate all the information available from the sequences, distance-based methods may perform
poorly when the amount of data is limited [61].

A different approach for tree recovery is based on spectral properties of the input data [3, 16].
Several methods work top-down, repeatedly applying spectral partitioning to the terminal nodes until
each partition contains a single node [35, 64]. However, there is no theoretical guarantee that the partitions
match the structure of the tree. Of direct relevance to this manuscript is the recently proposed spectral
neighbour joining (SNJ) [26], which consistently recovers the tree based on a spectral criterion. Similarly
to NJ, SNJ is a bottom-up method, which iteratively merges subsets of nodes to recover the tree.

Perhaps one of the most accurate approaches for tree recovery is to search for the topology that
maximizes the likelihood of the observed data [18]. Since computing the likelihood for every possible
topology is intractable, many methods apply a local search to iteratively increase the likelihood function
[21, 44, 51, 65]. Though there is no guarantee that such a process will converge to the global maximum
of the likelihood function, in many settings the resulting tree is more accurate than the one obtained by
distance-based methods. The main disadvantage of likelihood-based algorithms is their slow runtime,
which limits their applicability to trees of moderate size.

With the dramatic increase in the sizes of measured datasets, there is a pressing need to develop fast
tree recovery algorithms, able to handle trees with tens of thousands of nodes [47, 57]. For example,
the recently developed GESTALT method combines scRNA-seq readouts with CRISPR/Cas9 induced

Fig. 1. A tree with m = 7 observed nodes. The data consist of a sequence of characters at every terminal node.
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SPECTRAL TOP-DOWN RECOVERY OF LATENT TREE MODELS 3

mutations to perform lineage tracing on tens of thousands of cells [45, 49]. For the multispecies
coalescent model, recent works recover multiple gene trees, where each tree is composed of thousands
of genes [37]. Recently, many works recovered the evolutionary history of the SARS-COV-2 virus, with
over ten thousand variants [40].

Tree recovery problems with thousands of terminal nodes pose a significant computational challenge,
as even distance-based methods may prove to be too slow. To improve the scalability of slow but accurate
methods such as maximum likelihood, a common framework known as divide-and-conquer is to recover
the tree by a two-step process [39, 59]: (i) infer the tree structure independently for a large number of
small possibly random subsets of terminal nodes; (ii) compute the full tree by merging the small trees
obtained in step (i). In supertree methods, the small subsets of terminal nodes in step (i) overlap. Their
merging step requires optimizing a non-convex objective, which is computationally hard [25, 28]. Thus,
most supertree methods circumvent global optimization problems by iterative approaches for step (ii)
[55, 59]. Recently, several methods were derived to merge subtrees with disjoint terminal nodes [38, 39].
To apply these algorithms in a divide-and-conquer pipeline, the terminal nodes are partitioned according
to an initial tree estimate computed by NJ. Despite these works, the problem of reconstructing large
trees from limited amount of data is not yet fully resolved. In particular, there is still a need for fast and
scalable approaches that also have strong recovery guarantees.

Contributions and outline In this work, we develop spectral top-down recovery (STDR), a
scalable divide-and-conquer approach backed by theoretical guarantees to recover large trees. In contrast
to previous methods, the partitioning of the terminal nodes in step (i) is deterministic. Importantly, we
prove that under mild assumptions the partitions are consistent with the unobserved tree structure. The
importance of this consistency is that it simplifies considerably the merging process in step (ii) of the
algorithm. Since STDR is recursive, we replace the standard divide-and-conquer two step outline, with
the following recursive description.

(i) Partitioning: split the terminal nodes into two subsets.

(ii) Recursive reconstruction: infer the latent tree of each subset. When the partition size falls below
a given threshold τ , the tree is recovered by a user-specified algorithm. Above this threshold,
the reconstruction is done by recursively applying STDR to each subset.

(iii) Merging: reconstruct the full tree by merging the two small trees.

Each of the above three steps is explained in detail in Section 3. In step (i), we apply spectral
partitioning to a weighted complete graph, with nodes that correspond to the terminal nodes of the tree
and weights based on a similarity measure described in Section 3.1. In Section 4.1, we prove that given
an accurate estimate of these similarities, step (i) is consistent in the sense that the resulting subsets
belong to two disjoint subtrees. For this proof, we derive a novel relation between latent tree models
and a classic result from spectral graph theory known as Fiedler’s theorem of nodal domains [19]. This
theorem is important in various learning tasks such as clustering data [58], graph partitioning [12], and
low dimensional embeddings [27]. To the best of our knowledge, this is the first guarantee for spectral
partitioning in the setting of latent tree models.

The output of step (ii) is the inner structure of two disjoint subtrees. The task in step (iii) is to merge
them into the full tree. In Section 3.4, we show that this task is equivalent to finding the root of an
unrooted tree, given a reference set of one or more sequences, also known as an outgroup. We derive
a novel spectral-based method to find the root and prove its statistical consistency in Section 4.2. This
approach is of independent interest, as finding the root of a tree is a common challenge in phylogenetics
[7, 8, 32]. In Section 5, we derive finite sample guarantees for a family of trees generated according to the

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/12/3/iaad032/7243094 by N
ew

 York U
niversity user on 25 August 2023



4 Y. AIZENBUD ET AL.

molecular clock model. The analysis provide useful insights into the impact of various tree parameters
on the accuracy of our approach.

In Section 7, we compare the accuracy and runtime of various methods when applied to recover the
full tree directly versus when used as subroutines in step (ii) of STDR. For example, Figure 6 shows the
results of recovering simulated trees with 2000 terminal nodes generated according to the birth-death
model [52]. As one baseline, we applied RAxML [51], one of the most popular maximum likelihood
software packages in phylogenetics. With 8000 samples, RAxML took over 2 1

2 hours to complete. In
contrast, STDR with RAxML as subroutine and a threshold τ = 256 took approximately 30 minutes,
about five times faster. Importantly, in this setting, the trees recovered via STDR have similar accuracy
to those obtained by applying RAxML directly. These and other simulation results illustrate the potential
benefit of STDR in recovering large trees.

2. Problem setup

Let T be an unrooted binary tree with m terminal nodes. We assume that each node of the tree has an
associated discrete random variable over the alphabet {1, . . . , �}. We denote by x = (x1, . . . , xm) the
vector of the random variables at the m observed terminal nodes of the tree, and by h = (h1, . . . , hm−2)

the random variables at the non-terminal nodes. We assume that these random variables form a Markov
random field on T . This means that given the values of its neighbours, the random variable at a node is
statistically independent of the rest of the tree [9]. An edge e(hi, hj) connecting a pair of adjacent nodes
(hi, hj) is equipped with two transition matrices of size � × �,

P(hi|hj)ba = Pr[hi = b|hj = a], P(hj|hi)ba = Pr[hj = b|hi = a]. (2.1)

Note that every pair of adjacent nodes may in general have different transition matrices.
Our observed data is a matrix X = [x(1), . . . , x(n)] ∈ {1, . . . , �}m×n, where x(j) are random i.i.d.

realizations of x = (x1, . . . , xm). Each row in the matrix is a sequence of length n that corresponds to
a terminal node in the tree, see illustration in Figure 1. For example, in phylogenetics, each row in the
matrix corresponds to a different species, while each column corresponds to a different location in a
DNA sequence, see [14] and references therein. Figure 1 shows an example with m = 7 terminal nodes
and n = 23 observations. The support of each node is the DNA alphabet A, C, G, T , so � = 4.

Given the matrix X, the task at hand is to recover the structure of the hidden tree T . We assume that
for every pair of adjacent nodes (hi, hj), the corresponding �×� stochastic matrices P(hi|hj) and P(hj|hi)

defined in (2.1) are full rank, with determinants that satisfy

0 < δ < det(P(hi|hj)), det(P(hj|hi)) < ξ < 1. (2.2)

Eq. (2.2) implies that the transition matrices are invertible and are not permutation matrices. This
assumption is necessary for the tree’s topology to be identifiable, see Proposition 3.1 in [9] and [41].
Next, to describe our approach we present several definitions related to unrooted trees, following the
terminology of [60].

Definition 2.1. [clan] A clan is a subset of nodes in T that is connected to the rest of the tree by a
single edge.

Definition 2.2. the root of a clanA non-terminal node h is termed the root of a clan C if h ∈ C and it
is connected to the edge that separates C from the rest of the tree.
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SPECTRAL TOP-DOWN RECOVERY OF LATENT TREE MODELS 5

For example, in Figure 1 h4 and h5 are the root nodes of the clans C1 = {x6, x7, h5} and C2 =
{x4, x5, x6, x7, h2, h4, h5}, respectively. In our work, we will sometimes refer to the clans by their terminal
nodes only (e.g. {x6, x7} and {x4, x5, x6, x7} for C1 and C2).

Definition 2.3. [adjacent clans] Let C1 and C2 be two disjoint subsets of terminal nodes that form two
clans. If the union C1 ∪ C2 forms a clan, then C1 and C2 are adjacent clans.

Two disjoint clans whose respective root nodes share a common neighbouring node are adjacent
clans. For example, in Figure 1 the clans C1 = {x4, x5} and C2 = {x6, x7} are adjacent. Their respective
root nodes h4 and h5 are adjacent to h2. This observation is important for the merging step of STDR.
Throughout the paper, we denote by |C| the number of elements in a subset C. We denote by ‖A‖ and
‖A‖F the spectral and Frobenius norm of a matrix A.

3. A spectral top-down approach for tree reconstruction

Here we present the three steps of the STDR algorithm, as outlined in the introduction. Pseudocode for
the method appears in Algorithm 1. We begin with the definition and properties of the similarity matrix
and similarity graph.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/12/3/iaad032/7243094 by N
ew

 York U
niversity user on 25 August 2023



6 Y. AIZENBUD ET AL.

3.1 The pairwise similarity matrix and similarity graph

Similar to Eq. (2.1), we define the �×� transition matrix for every pair hi, hj of (not necessarily adjacent)
nodes by

P(hi|hj)ba = Pr[hi = b|hj = a].

Note that due to the Markov assumption, the transition matrix is multiplicative along the edges of the
tree. For example in Figure 1, P(x1|x2) = P(x1|h3)P(h3|x2). In [26], a similarity function between a pair
of nodes hi and hj was defined as follows:

S(hi, hj) =
√

det(P(hi|hj)) det(P(hj|hi)). (3.1)

Similar to the transition matrix, the similarity is multiplicative along the edges of the tree and is bounded
by δ ≤ S(hi, hj) ≤ ξ . Thus, it exhibits an exponential decay along the tree. For any two ordered sets of
terminal or non-terminal nodes A = {a1, . . . ar} and B = {b1, . . . bs}, we denote by S(A, B) a matrix of
size r × s, where

S(A, B)ij = S(ai, bj) for all 1 ≤ i ≤ r and1 ≤ j ≤ s.

To simplify notation, for the case where A and B are both equal to the full set of terminal nodes, we
denote the similarity matrix by S:

S = S(x, x) where x = {x1, . . . , xm}. (3.2)

where by definition, Sii = 1 ∀(i). The matrix S is the adjacency matrix of the following graph.

Definition 3.1. [Similarity graph] The similarity graph G is a complete graph whose vertices are the
terminal nodes of T . The weight assigned to every edge e(xi, xj) is the similarity S(xi, xj).

The relation between the spectral properties of G and the topology of T forms the theoretical basis
of our approach. The following result from [26, Lemma 3.1] shows how the spectral structure of the
similarity matrix S relates to the structure of the underlying tree.

Lemma 3.1. Let A and B be a partition of the terminal nodes of an unrooted binary tree T . The matrix
S(A, B) is rank-one if and only if A and B are clans of T .

Lemma 3.1 implies that given the exact similarity matrix S, one can determine if a subset A of terminal
nodes is a clan in T by computing the rank of S(A, Ac), where Ac = x\A. In practice, the exact similarity
matrix S is unknown. Yet, as shown in [26], a sufficiently accurate estimate Ŝ, which in general is full
rank, still allows to determine if a subset is a clan.

3.2 Tree partitioning via spectral clustering

The aim of step (i) of STDR is to partition the terminal nodes into two clans of T . Our approach is based
on the similarity graph G of Definition 3.1. One possible way to partition the graph is by the min-cut
criteria. Given the exact similarity, this approach is guaranteed to yield two clans, see Lemma B.1 in

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/12/3/iaad032/7243094 by N
ew

 York U
niversity user on 25 August 2023



SPECTRAL TOP-DOWN RECOVERY OF LATENT TREE MODELS 7

Fig. 2. Symmetric binary tree with 128 terminal nodes. The data consists of sequences of length n = 1000 over the � = 4
characters of the DNA alphabet, generated according to the HKY model.

the appendix. Though the min-cut problem can be solved efficiently [58], it often leads to unbalanced
partitions of the graph, with the smaller one containing 1 or 2 terminal nodes. Since one goal is to reduce
the runtime of the reconstruction algorithm in step (ii), we would like to avoid imbalanced partitions. To
this end, we propose to partition the terminal nodes via a spectral approach based on the Fiedler vector.

Definition 3.2. Graph Laplacian and Fiedler vector. The Laplacian matrix of a graph G with a
symmetric weight matrix W is given by LG = D − W, where D is a diagonal matrix with Dii =∑

j W(xi, xj). The Fiedler vector is the eigenvector of LG that corresponds to the second smallest
eigenvalue.

In the STDR algorithm, we use the Fiedler vector v of the similarity graph G to partition the terminal
nodes into two subsets C1 and C2 (Algorithm 1, line 6), as follows:

C1 = {i; v(i) ≥ 0}, C2 = {i; v(i) < 0}. (3.3)

Importantly, in Section 4.1 we prove that partitioning the nodes of G via Eq. (3.3) yields two clans of
the underlying tree T . To illustrate this point, we created a tree graphical model from a symmetric
binary tree with m = 128 nodes, see Figure 2(a). The transition matrices between adjacent nodes
are all identical and were chosen according to the HKY model [24]. We used this model to generate
a dataset of nucleotide sequences of length n = 1000. Figure 2(b) shows the Fiedler vector of the
similarity graph estimated from the dataset. Here, the Fiedler vector exhibits a single dominant gap,
and partitioning the terminal nodes by Eq. (3.3) yields two sets C1 and C2 which are indeed clans of T .
A similar example is shown in the appendix for a tree generated according to the coalescent model. In
Section 5.1, we derive a lower bound for the number of samples sufficient to obtain two clans with high
probability.

3.3 Recursive reconstruction step

Step (i) of STDR outputs two sets of terminal nodes C1 and C2. Under certain conditions defined in
Section 4.1, these are guaranteed to be two clans in the tree T . The next task is to construct trees T1 and
T2 that describe their latent internal structure. If |C1| > τ , then T1 is recovered by recursively applying
the three steps of STDR to C1. When |C1| ≤ τ , the input is small enough that we consider it tractable to
use a direct method for tree reconstruction, even a slow one like maximum likelihood.
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8 Y. AIZENBUD ET AL.

Fig. 3. Merging example.

Fig. 4. Different choices of placeholder edges result in a different merged trees.

3.4 Merging disjoint subtrees

The output of step (ii) of STDR consists of the internal unrooted tree structures T1 and T2 of two subsets
of terminal nodes C1 and C2. Assuming steps (i) and (ii) were successful, then C1 and C2 are adjacent
clans, and T1 and T2 are indeed their correct internal structures. The remaining challenge in step (iii) is
to recover the full tree T by correctly merging T1 and T2.

Since T1 and T2 are unrooted binary trees, to merge them it is necessary to add a root node to
each of them. Adding a connecting edge between the two root nodes yields a binary unrooted tree and
completes the merging process, see Figure 3 for an illustration. Adding a root node to a given subtree
requires finding which one of its edges is the the “placeholder edge” (illustrated in red in Figure 3(a)).
Subsequently, the placeholder edge is replaced with two edges connected to the root node. Importantly,
as shown in Figure 3, different choices for the placeholder edge in either T1 or T2 yield a merged tree
with a different topology.

Thus, merging T1 and T2 reduces to the task of identifying the correct ‘placeholder edge’. Here,
we derive a novel spectral method for finding these edges. To the best of our knowledge, our approach
for merging subtrees is new and may be of independent interest for other applications, such as rooting
unrooted trees [7, 8, 32]. In the following lemma, whose proof is in Appendix C, we describe a property
of the placeholder edge that motivates our approach.

Lemma 3.2. Let C1 be a set of terminal nodes that forms a clan in T , and let T1 be the internal structure
of C1. An edge e ∈ T1 is the correct placeholder edge if and only if it partitions C1 into two sets
A(e), B(e), such that both form clans in T .
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SPECTRAL TOP-DOWN RECOVERY OF LATENT TREE MODELS 9

Lemma 3.2 is illustrated in Figure 3(a). The edge e(hA, hB) divides the left subtree into the clans
{x1, x2} and {x3, x4}. These subsets also form clans in the full tree depicted in Figure 3(b).

Next, using Lemma 3.2, we derive a spectral characterization of the correct placeholder edge. Recall
that by Lemma 3.1, the matrix S(C1, C2) ∈ R

|C1|×|C2|, is rank one. Thus,

S(C1, C2) = uσvT , where ‖v‖ = ‖u‖ = 1, and σ > 0. (3.4)

Given a placeholder edge e and its corresponding partition of terminal nodes A(e) and B(e), we denote by
uA(e), uB(e) the entries of u that correspond to A(e) and B(e), respectively. The following lemma, proven
in Appendix C, characterizes the correct placeholder edge in terms of uA(e) and uB(e).

Lemma 3.3. An edge e is the correct placeholder edge of T1 if and only if there exists a constant α such
that

S(A(e), B(e)) = uA(e)αuT
B(e). (3.5)

In practice, we can only compute estimates S, û of the similarity S and vector u. Motivated by Lemma
3.3, we propose to determine the placeholder edge e∗ by minimizing the following score function,

e∗ = argmin
e

d(e) = argmin
e

1

‖Ŝ(A(e), B(e))‖F

min
α

‖Ŝ(A(e), B(e)) − ûA(e)αûT
B(e)‖F . (3.6)

The normalizing factor ‖S(A(e), B(e))‖F is added since the size of S(A(e), B(e)) changes for every edge
e. Note that given the exact matrix S, at the correct placeholder edge d(e∗) = 0. In Section 5.2, we derive
a sufficient number of samples that guarantee recovery of the correct placeholder edge by Eq. (3.6) with
high probability.

4. Correct tree recovery of STDR

In this section, we consider the population setting where the similarity matrix S is known. Under the
assumption that the subroutine Alg (See Alg. 1) accurately recovers the subtrees of size τ , we prove that
STDR correctly recovers the full tree. We do so by analyzing the partitioning step (i) and the merging
step (iii) of STDR. Our key results are Theorem 4.2, which states that step (i) is guaranteed to yield
disjoint clans, and Theorem 4.5, which states that given accurate trees for two clans, step (iii) recovers
the exact structure of the full tree. Combining these two results directly yields the following theorem
establishing the correctness of STDR in the population setting.

Theorem 4.1. Given an exact similarity matrix S, and assuming that the subroutine Alg correctly
recovers the internal structure of its input, STDR recovers the exact latent tree T .

4.1 Consistency of the partition step

The following theorem proves that given the exact similarity matrix, partitioning the terminal nodes of
the tree by thresholding the Fiedler vector as described in Section 3.1 yields two adjacent clans.

Theorem 4.2. Let G be the similarity graph of a binary tree T . Denote by v the Fiedler vector of G
and by {C1, C2} a partition of the terminal nodes according to the sign pattern of v as in Eq. (3.3). Then
C1, C2 are adjacent clans in T .
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10 Y. AIZENBUD ET AL.

Before proving Theorem 4.2, we would like to put its novelty into the context of related results. A
result similar in nature to Theorem 4.2 was proved for hierarchical block models (HBM) [6] where
the underlying block structure of a given connectivity matrix is recovered by recursive partitioning
according to its Fiedler vector. Their statistical guarantee, however, requires additional assumptions on
the parameters of the hierarchical block model. Theorem 4.2, in contrast, holds for any tree structure and
parameters. A different distance-based approach for tree partitioning was derived in chapter 4 of [20].
This approach is guaranteed to yield two clans given the exact distance matrix between terminal nodes.
In Appendix D, we show empirically that our similarity based approach is more robust than the distance
based approach, specifically in cases where the number of samples is limited.

For the proof of Theorem 4.2, we present several preliminaries on graphs. First, we define the Schur
complement of a matrix, which plays an important role in graph theory [13].

Definition 4.3. Schur complement. Let A, B, C and D be matrices of dimensions p × p, p × q, q × p
and q × q, respectively. Assume D is invertible and consider the matrix

M =
[

A B
C D

]
,

of size (p + q) × (p + q). The Schur complement of D with respect to M is the p × p matrix

M/D = A − BD−1C.

Let H be a graph with a set of nodes V and Laplacian matrix L. We denote by LR the principal sub-
matrix of L that corresponds to a subset of nodes R ⊂ V . The Schur complement of LR with respect to L
yields the Laplacian of a different graph, with |V \ R| nodes [11, 13]. We denote this Laplacian matrix
by LH/R. The rows and columns of LH/R correspond to vertices of H that are not in R. When the graph
is a tree T , and R is the set of its non-terminal nodes, then LT /R is the Laplacian of a complete graph
G whose nodes are the terminal nodes of T .

Equipped with these definitions, we proceed to the proof of Theorem 4.2. The proof consists of two
parts, that correspond to Theorem 4.4 and Lemma 4.1. Theorem 4.4, which is a rephrase of Theorem 3.3
of [54], shows that one can partition the terminal nodes of a tree T into two clans via the Fiedler vector
of LT /R, where R is the set of the tree’s internal nodes.

Theorem 4.4. [54],Theorem 3.31. Let T be a tree with a node set V and a subset of non terminal nodes
R ⊂ V . We denote by LT the Laplacian of T , by LR the sub-matrix of LT that corresponds to the nodes
in R, and by LT /R the Laplacian of a graph G obtained by Schur complement of LR with respect LT .
Let v be the Fiedler vector of G, and C1, C2 the following partition of the terminal nodes,

C1 = {i ∈ V \ R; v(i) ≤ 0}, C2 = { j ∈ V \ R; v(j) > 0}.

Then C1 and C2 are adjacent clans in T .

Theorem 4.4, however, is not directly applicable to our setting, since computing LT /R requires
knowledge of the unknown similarities between all nodes of T , including its unobserved nodes. Here,
we derive Lemma 4.1 that shows that for any tree T , there is a twin tree T̃ with the same topology,

1 For clarity, we rephrased the theorem from [54] according to our terminology.
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SPECTRAL TOP-DOWN RECOVERY OF LATENT TREE MODELS 11

such that LT̃ /R = LG. This result, proven in appendix E, provides the critical missing link required for
inference of the latent tree from the similarity matrix, which can be estimated from observed data.

Lemma 4.1. Let T be a tree with a set of internal nodes R. Let G be the similarity graph of T . Then
there is a tree T̃ with the same topology as T but different edge weights, such that

LG = LT̃ /R.

Combining Lemma 4.1 with Theorem 4.4 yields the following proof of Theorem 4.2.

Proof of Theorem 4.2. Let LG be the Laplacian matrix of the similarity graph G. By Lemma 4.1 there is
a tree T̃ with the same topology as T such that LG = LT̃/R. By Theorem 4.4, partitioning the terminal

nodes of T̃ according to the sign pattern of the Fiedler vector of LT̃ /R yields adjacent clans in T̃ . Since

LG = LT̃ /R and T̃ has the same topology as T , it follows that partitioning the terminal nodes of T
according to the Fiedler vector of LG yields adjacent clans in T . �

4.2 Correctness of the merging step

Step (iii) of STDR merges the two subtrees, T1 and T2, that were constructed from the two disjoint
subsets of terminal nodes C1 and C2. As described in Section 3, this step is done by finding for each tree
its placeholder edge as the edge with the smallest score d(e), Eq. (3.6). Here, we prove that this merging
step is correct, under the following two assumptions on its input (the output of steps (i) and (ii)): the two
subtrees T1, T2 correspond to adjacent clans in T and their internal structure was recovered correctly.

Theorem 4.5. Let C1 and C2 be the terminal nodes of two adjacent clans that partition a tree T . Let
T1 and T2 be the internal structures of these clans. Then given the exact similarity matrix S(C1, C2),
minimizing the criterion in Eq. (3.6) yields the correct placeholder edge.

Proof. By Lemma 3.3, for the correct placeholder edge e∗ there exists an α ∈ R such that

S(A(e∗), B(e∗)) = uA(e∗)αuT
B(e∗).

Hence d(e∗) = 0. If e is an incorrect placeholder edge, then again according to Lemma 3.3 there is no
constant α that satisfies the equation, and hence d(e) > 0 which implies e∗ = argmin d(e). �

5. Finite sample guarantees for STDR

In practice, the similarity matrix S is unknown, and an estimate Ŝ is computed from sequences of length n.
In this section we show that STDR is still able to correctly recover the tree provided that Ŝ is sufficiently
close to S. Specifically, in Sections 5.1 and 5.2, we derive an explicit formula for the number of samples
n that suffice to guarantee, with high probability, the success of a single step of partitioning and merging.
In Section 5.3, we extend the results to multiple iterations and compare them to guarantees derived for
other tree recovery algorithms.

For simplicity, in the finite sample analysis, we assume the Jukes-Cantor (JC) model of sequence
evolution, where each transition matrix is parameterized by a single mutation rate θ(i, j):

P(hi|hj)ba = P[hi = b|hj = a] =
{

1 − θ(i, j) a = b

θ(i, j)/(� − 1) a 
= b.
(5.1)
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12 Y. AIZENBUD ET AL.

According to this model, the similarity between adjacent nodes defined in Eq. (3.1) simplifies to

S(hi, hj) =
(

1 − �

� − 1
θ(i, j)

)�−1

.

By Eq. (2.2) the similarity is strictly positive and hence θ(i, j) < (� − 1)/�. We remark that our analysis
can be extended, under minor additional assumptions to more general models of evolution as in [26,
Lemma 4.8).

5.1 Finite sample guarantees for the partitioning step

We derive an explicit expression for the number of samples n that guarantee with high probability, that
the partitioning step would yield two clans. In our derivation, we assume that the similarity matrix S
satisfies the hierarchical constant block model (CBM) addressed in [6]. We assume there is a hierarchy
of subsets Ai and Bi (for a formal definition of hierarchical subsets/clusters see Definition 1 in [6]), and
that for each subset there is a (different) constant c such that

S(x, y) = c ∀(x, y) ∈ Ai × Bi,

S(x, y) > c ∀(x, y) ∈ Ai × Ai and ∀(x, y) ∈ Bi × Bi. (5.2)

In phylogenetics, this assumption is satisfied in the molecular clock model [34], and we will thus use the
two terms interchangeably. In the molecular block model, the probability of mutation between adjacent
nodes is determined by two factors: (i) the edge length between them and (ii) a mutation rate matrix that is
constant throughout the tree. The structure of the rate matrix is determined by the choice of evolutionary
model, such as Jukes-Cantor. In addition, the path length between all terminal nodes and the root is
constant. This implies that for every ancestor h (internal node) the similarity between the terminal nodes
Ai on the left of h and the nodes Bi on the right of h is constant as in Eq. (5.2). For the hierarchy of
partitions, we denote by η the maximum over all partitions C of the ratio between the size of left and
right parts Ai, Bi.

η = max
i

{|Ai|/|Bi|, |Bi|/|Ai|}. (5.3)

This factor serves as a measure for tree’s imbalance. For example, for a balanced binary tree, η is equal
to 1. On the other hand, for a tree similar to a caterpillar that satisfies the CBM assumptions η = m − 1,
see illustration in appendix G. We denote by r(T ) the diameter of T , which is the maximal distance
between pairs of terminal nodes,

r(T ) = max
i,j

(− log S(xi, xj)). (5.4)

Finally, we denote by h(T ) the depth of T as defined in [15]:

Definition 5.1. Let T1, T2 be two rooted subtrees with respective roots h1, h2 obtained by removing an
edge e(h1, h2) from T . Let d1(e), d2(e) be the distances − log S(h1, xi) and − log S(h2, xj) from h1, h2
to the closest leaves xi and xj in T1, T2, respectively. Then

h(T ) = max
e

max{d1(e), d2(e)}. (5.5)
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SPECTRAL TOP-DOWN RECOVERY OF LATENT TREE MODELS 13

Note that h(T ) < r(T ) as the maximal distance between terminal nodes is larger than any distance
between a pair of terminal and non terminal nodes. The following theorem bounds the number of samples
n by the properties of the tree defined in Eqs (5.3),(5.4) and (5.5).

Theorem 5.2. Let T be a Jukes-Cantor evolutionary tree with m terminal nodes, and a similarity matrix
S that satisfies the assumptions made for the CBM. If the number of samples n satisfies

n ≥ 4 ln
(

2m2

ε

)
η�2m(

√
m + 1)2e2r(T ) max

{
1,

(1 + η)2

(er(T )−h(T ) − 1)2

}
,

then with probability at least 1 − ε, STDR partitions the terminal nodes into two clans.

Remark 5.1. For the CBM model, h(T ) = r(T )/2. Thus, a simpler (though a bit weaker) guarantee
is that the partitioning yields two trees if,

n ≥ 4 ln
(

2m2

ε

)
η�2m(

√
m + 1)2e2r(T ) (1 + η)2

(1 − ξ)
.

To prove Theorem 5.2, we derive a bound on the error in the estimate Ŝ that the partitioning step can
tolerate.

Lemma 5.1. Assume a tree with m terminal nodes generated according to the molecular clock model. If
the estimate Ŝ of its similarity matrix satisfies

‖S − Ŝ‖ ≤
√

me−r(T )

√
η23/2(

√
m + 1)

min
{

1,
1

1 + η

(
er(T )−h(T ) − 1

)}
, (5.6)

then STDR correctly partitions the terminal nodes into two clans.

To prove Lemma 5.1, we use the following lemma regarding the spectrum of the Laplacian. This
Lemma is a reformulation of lemma 7 from [6] and its proof, which address the spectrum of the CBM.

Lemma 5.2. Let T be a tree with m terminal nodes generated according to the molecular clock model,
and let L be the Laplacian of its similarity graph. We denote by A, B a partition of the terminal nodes
such that the corresponding trees TA, TB also satisfy the molecular clock model. The first, second and
third smallest eigenvalues of L satisfy

λ1 = 0, λ2 = me−r(T ), λ3 ≥ m

1 + η

(
ηe−r(T ) + e−h(T )

)
.

Partitioning the terminal nodes according to the sign pattern of the eigenvector v2 yields the subsets A, B.

In addition, the elements of v2 are bounded away from 0 such that |v2(i)| ≥
√

1
mη

for all i.

Proof of Lemma 5.1. Let L and L̂ be two symmetric matrices and let vi and v̂i be their i-th eigenvectors,
respectively. A variant of the Davis-Kahan theorem for perturbation of eigenvectors (see Theorem 2 of
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14 Y. AIZENBUD ET AL.

[62]) gives

‖vi − v̂i‖ ≤ 23/2 ‖L − L̂‖
γi

. (5.7)

where γi = min{|λi − λi+1|, |λi − λi−1|} is the eigengap. We apply the theorem to the Laplacian matrix

L = D − S (see Definition 3.2), and its Fiedler vector v2. The spectral norm ‖L − L̂‖ can be bounded by,

‖L − L̂‖ ≤ ‖D − D̂‖ + ‖S − Ŝ‖ = max
i

∣∣∣∑
k

(Sik − Ŝik)

∣∣∣+ ‖S − Ŝ‖

≤ max
i

∑
k

|Sik − Ŝik| + ‖S − Ŝ‖ ≤ ‖S − Ŝ‖∞ + ‖S − Ŝ‖ ≤≤ (
√

m + 1)‖S − Ŝ‖, (5.8)

where the last inequality follows from a general bound on the infinity norm. Substituting (5.8) into (5.7)
yields

‖v2 − v̂2‖ ≤ 23/2(
√

m + 1)
‖S − Ŝ‖

γ2
. (5.9)

From Lemma 5.2 it follows that the spectral gap γ2 is bounded by,

γ2 = min(λ2 − λ1, λ3 − λ2) ≥ me−r(T ) min
{

1,
1

1 + η

(
er(T )−h(T ) − 1

)}
. (5.10)

Combining Eqs (5.9) and (5.10) proves that if

‖S − Ŝ‖ ≤
√

me−r(T )

√
η23/2(

√
m + 1)

min
{

1,
1

1 + η

(
er(T )−h(T ) − 1

)}
(5.11)

then ‖v2−v̂2‖ < 1/
√

ηm, which implies ‖v2−v̂2‖∞ < 1/
√

ηm. Thus, by Lemma 5.2 sign(vi) = sign(v̂i)

for each i ∈ [m]. Hence, partitioning the terminal nodes according to sign(v̂2) or sign(v2) yields the same
result. As we proved in Theorem 4.2, the resulting subsets are clans of the tree. �

Next, we prove Theorem 5.2 under the additional assumption of the Jukes-Cantor model. The theorem
is proved by combining Lemma 5.1 with a concentration bound on the similarity matrix estimate Ŝ,
derived in [26].

Proof of Theorem 5.2. From Lemma 4.7 of [26], under the JC model of evolution,

P
(
‖Ŝ − S‖ ≤ t

)
≥ 1 − 2m2exp

(
− 2nt2

�2m2

)
. (5.12)

Setting t to the right-hand side of (5.11) yields that if

n ≥ 4 ln
(

2m2

ε

)
η�2m(

√
m + 1)2e2r(t) max

{
1,

(1 + η)2

(er(T )−h(T ) − 1)2

}
,
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SPECTRAL TOP-DOWN RECOVERY OF LATENT TREE MODELS 15

the requirements of Lemma 5.1 are satisfied with probability at least 1 − ε, which concludes the
proof. �

5.2 Merging step of STDR

We derive finite sample bounds for the merging step of STDR. In contrast to the partitioning
step, the guarantees for the merging step, presented in the following theorem, hold for any tree
topology. For simplicity, Theorem 5.3 derives a guarantee for finding the correct placeholder edge
in T1.

Theorem 5.3. Let T be a tree with m terminal nodes, which consists of two subtrees T1, T2 with
terminal nodes C1 and C2, respectively. Let {A, B} be the partition of C1 induced by the correct place-
holder edge e∗, and let D = min{‖S(A, B)‖F , ‖S(C1, C2)‖F}. For any ε > 0, if the number of samples n
satisfies

n ≥ 8�2m3

(
2

D
+ 2.5

D2 + 1 + 10
√

2

D3

)2 (
ξ4

δ8(1 − ξ2)2

)
log
(

2m2

ε

)
, (5.13)

then STDR finds the correct placeholder edge in T1 with probability at least 1 − ε. A similar guarantee
can be derived for finidng the correct placeholder edge in T2.

Theorem 5.2 provides a theoretical guarantee for the partitioning step under the assumption
of the molecular clock. For this setting, we can lower bound the value of D via the following
lemma,

Lemma 5.3. Under the assumption of the molecular clock model, the value of D is lower bounded
by

D ≥ exp(−r(T )) max
{

1,
√

ηm

(1 + η)2

}
.

Combining Lemma 5.3 with Theorem 5.3 yields that under the added assumptions of the molecular
clock model, the number of observations sufficient to correctly merging two trees is of the order
of

n = O
(

m exp
(
2r(T )

)
min{(1 + η)3, m2}

)
.

which implies a linear dependency on m for relatively balanced trees, but might require O(m3) for highly
imbalanced trees for which η = O(m). In Appendix G, we provide an illustration and a short explanation
as to the value of D .

Our proof of Theorem 5.3 consists of three steps: (i) In Lemma 5.4 we derive a lower
bound on the score d(e) of an edge e that is not the correct placeholder edge; (ii) Lemma 5.7
provides a sufficient condition on the accuracy of the similarity matrix estimate Ŝ that guarantees
the merging step will yield the correct placeholder edge; (iii) For the JC model, we derive an
expression for the number of samples required for the condition in Lemma 5.7 to hold with high
probability.
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16 Y. AIZENBUD ET AL.

Fig. 5. Bounding the score d(e) for an incorrect placeholder edge in T1. The correct placeholder edge e∗ ∈ T1 is marked by a
dotted blue line. The incorrect placeholder edge e, which partitions the terminal node to subsets A(e) and B(e), is marked by a
thick red line. The two non-terminal nodes on the path between the correct and incorrect edges are denoted by h1, h2 = hA and
the root node of C1 is denoted by h0. The subset of terminal nodes closest to hi is denoted by Ai.

Step 1: A lower bound on the score d(e) for incorrect edges. In Section 4.2, we showed that
d(e) = 0 if and only if e is the correct placeholder edge. Here, for the exact similarity matrix S we derive
a lower bound on d(e), if e is an incorrect placeholder edge in T1.

Lemma 5.4. Let T be a tree that consists of two subtrees T1, T2, and let e ∈ T1 be an edge that is not
the correct placeholder edge. Then,

d(e) ≥
⎧⎨⎩

(
√

2δ)log mδ3(1−ξ2)

2
√

mξ2 δ2 ≤ 0.5
δ4(1−ξ2)√

2mξ2 δ2 > 0.5.

For the proof of Lemma 5.4, we introduce new notation, illustrated in Figure 5. We denote by e∗ ∈ T1
the correct placeholder edge, and by e ∈ T1 an arbitrary incorrect placeholder edge. The edge e splits
the terminal nodes of T1 into A and B and has endpoints hA and hB. We denote by h0, . . . , hN the non
terminal nodes on the path between the root node of T1, denoted h0, and hA = hN . We partition the
terminal nodes in A to N + 1 subsets A0, . . . , AN according to h0, . . . , hN as follows: Every node in A is
assigned to the closest non terminal node on the path between h0, . . . , hN . In the proof of Lemma 5.4,
we use the following auxiliary lemma, proven in appendix F.

Lemma 5.5. Let Ri = S(h0, hi)
2. For any 1 ≤ i ≤ N − 1 and 1 ≤ k ≤ (N − i) we have

min
β

(1 − βRi)
2‖S(Ai, B)‖2

F + (1 − βRi+k)
2‖S(Ai+k, B)‖2

F

‖S(Ai, B)‖2
F + ‖S(Ai+k, B)‖2

F

≥
⎧⎨⎩

(2δ2)log mδ2(k+1)(1−ξ2)2

4mξ4 δ2 ≤ 0.5
δ2(k+2)(1−ξ2)2

2mξ4 δ2 > 0.5

(5.14)

Proof of Lemma 5.4 The proof consists of the following steps: (i) we express the score d(e) defined in
Eq. (3.6) in terms of ‖S(A0, B)‖F , . . . ‖S(AN , B)‖F . The new expression is given in Eq. (5.18). (ii) In Eq.
(5.19) we derive a lower bound on d(e) in terms of two consecutive terms ‖S(Ai, B)‖F and ‖S(Ai+1, B)‖F .
(iii) In Lemma 5.5 we combine Eq. (5.19) with a bound on ‖S(Ai, B)‖F and ‖S(Ai+1, B)‖F to conclude
the proof.

First, we express the numerator of d(e) in Eq. (3.6) in terms of S(A0, B), . . . , S(AN , B). Since h0
separates the terminal nodes C1 and C2 of the subtrees T1 and T2, by the multiplicative property of the
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SPECTRAL TOP-DOWN RECOVERY OF LATENT TREE MODELS 17

Fig. 6. A birth-death tree with m = 2048 terminal nodes. The mean and standard deviation of the normalized RF distance (left)
between the reconstructed tree and the input tree and of the runtime (right) are shown for each method over five independent runs.

similarity we have,

S(C1, C2) = S(C1, h0)S(h0, C2) = uσvT ‖u‖ = ‖v‖ = 1.

Let β̄ be the proportionality constant between u and S(C1, h0) such that u = β̄S(C1, h0). Recall that
uA, uB in Eq. (3.6) are the entries in u that correspond to A and B, respectively. Partitioning u into uA and
uB and partitioning S(C1, h0) into S(A, h0) and S(B, h0) gives

uA = β̄S(A, h0), uB = β̄S(B, h0).

It follows that, for any α ∈ R,

S(A, B) − uAαuT
B = S(A, B) − αβ̄2S(A, h0)S(h0, B) = S(A, B) − βS(A, h0)S(h0, B),

where β = β̄2α. Next, we split the matrix S(A, B) into the submatrices S(A0, B), S(A1, B), . . . , S(AN , B).
Similarly, we split S(A, h0) into the components S(A0, h0), S(A1, h0), . . . , S(AN , h0). This gives

S(A, B) − βS(A, h0)S(h0, B) =

⎡⎢⎢⎢⎣
S(A0, B)

S(A1, B)
...

S(AN , B)

⎤⎥⎥⎥⎦− β

⎡⎢⎢⎢⎣
S(A0, h0)

S(A1, h0)
...

S(AN , h0)

⎤⎥⎥⎥⎦ S(h0, B). (5.15)

We show that the matrix S(Ai, h0)S(h0, B) on the right side of Eq. (5.15), is proportional to S(Ai, B) with
the proportionality constant Ri = S(h0, hi)

2.

RiS(Ai, B) = S(h0, hi)
2S(Ai, hi)S(hi, B)

= S(Ai, hi)S(hi, h0) S(h0, hi)S(hi, B) = S(Ai, h0)S(h0, B). (5.16)
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18 Y. AIZENBUD ET AL.

Inserting (5.16) into (5.15) gives⎡⎢⎢⎢⎣
S(A0, B)

S(A1, B)
...

S(AN , B)

⎤⎥⎥⎥⎦− β

⎡⎢⎢⎢⎣
R0S(A0, B)

R1S(A1, B)
...

RNS(AN , B)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
(1 − βR0)S(A0, B)

(1 − βR1)S(A1, B)
...

(1 − βRN)S(AN , B)

⎤⎥⎥⎥⎦ .

Thus, the score in Eq. (3.6) is equivalent to

d2(e) = 1

‖S(A, B)‖2
F

min
β

N∑
i=0

(1 − βRi)
2‖S(Ai, B)‖2

F . (5.17)

Since ‖S(A, B)‖2
F =∑N

i=0 ‖S(Ai, B)‖2
F , we can rewrite Eq. (5.17) as follows,

d2(e) = min
β

∑N
i=0(1 − βRi)

2‖S(Ai, B)‖2
F∑N

i=0 ‖S(Ai, B)‖2
F

. (5.18)

Next, the following lemma, proven in Appendix F, bounds the ratio of such two sums.

Lemma. For two series of positive numbers ai, bi > 0 we have∑
ai∑
bi

≥ min
i 
=j;|i−j|≤2

ai + aj

bi + bj
.

Applying the lemma to Eq. (5.18) yields

d2(e) ≥ min
0≤i≤N−1;k∈{1,2} min

β

(1 − βRi)
2‖S(Ai, B)‖2

F + (1 − βRi+k)
2‖S(Ai+k, B)‖2

F

‖S(Ai, B)‖2
F + ‖S(Ai+k, B)‖2

F

. (5.19)

Combining Eq. (5.19) and Lemma 5.5 gives

d2(e) ≥

⎧⎪⎨⎪⎩
(2δ2)log mδ6(1−ξ2)2

4mξ4 δ2 ≤ 0.5

δ8(1−ξ2)2

2mξ4 δ2 > 0.5,

which concludes the proof of Lemma 5.4, and with it, Step 1 in the proof of Theorem 5.3. �
Step 2: A sufficient condition on the estimate Ŝ.
Lemma 5.4 shows that there is a gap between the score of the correct placeholder edge and the

scores of all other edges in T1. In the following lemma we show that if Ŝ is sufficiently close to S the
gap is preserved and STDR selects the correct placeholder edge. For simplicity, we address only the case
δ2 > 0.5.
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SPECTRAL TOP-DOWN RECOVERY OF LATENT TREE MODELS 19

Lemma 5.7. Let D = min{‖S(A, B)‖F , ‖S(C1, C2)‖F}. If the similarity matrix estimate Ŝ satisfies

‖S − Ŝ‖F ≤ 1

2

(
2

D
+ 2.5

D2
+ 1 + 10

√
2

D3

)−1
δ4(1 − ξ2)√

2mξ2
, (5.20)

then STDR selects the correct placeholder edge.

In our proof, we use the following auxiliary lemma, proven in Appendix F.

Lemma 5.8. Let d(e), d̂(e) be the exact and estimated score functions. If ‖S − Ŝ‖F ≤ D/2, then

|d(e) − d̂(e)| ≤ ‖S − Ŝ‖F

(
2

D
+ 2.5

D2 + 1 + 10
√

2

D3

)
.

Proof of Lemma 5.7. Suppose e∗ ∈ T1 is the correct placeholder edge and e′ 
= e∗ is a different edge in
T1. By Lemma 5.4

d(e′) ≥ δ4(1 − ξ2)√
2mξ2

,

while for the correct edge d(e∗) = 0. It follows from the triangle inequality that if

|d(e) − d̂(e)| ≤ 1

2

δ4(1 − ξ2)√
2mξ2

, (5.21)

for all edges e, then d̂(e∗) < d̂(e′). Since δ ≤ ξ < 1 and m ≥ 2,

1

2

(
2

D
+ 2.5

D2 + 1 + 10
√

2

D3

)−1
δ4(1 − ξ2)√

2mξ2
≤ D

2
.

Thus, if the estimate Ŝ satisfies Eq. (5.20), then ‖S − Ŝ‖ ≤ D/2 and the condition for Lemma 5.8 holds.
Combining the lemma with Eq. (5.21) concludes the proof. �

Step 3: Finite sample guarantees We are now ready to prove Theorem 5.3, which bounds the
number of samples required to compute, with high probability, a sufficiently accurate estimate Ŝ, as
determined in Lemma 5.7.

Proof of Theorem 5.3. The following concentration bound for Ŝ was derived in Lemma 4.7 of [26],

Pr(‖Ŝ − S‖F ≤ t) ≥ 1 − 2m2 exp
(

− 2nt2

�2m2

)
. (5.22)
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We note that in [26], this bound was presented for the spectral norm, but the proof holds for the Frobenius
norm as well. Suppose that Pr(‖Ŝ − S‖F ≤ t) > 1 − ε, Namely

n ≥ �2m2

2t2
log
(

2m2

ε

)
. (5.23)

By Lemma 5.7, a sufficient condition for STDR to select the correct placeholder edge is

‖S − Ŝ‖F ≤ 1

2

(
2

D
+ 2.5

D2 + 1 + 10
√

2

D3

)−1
δ4(1 − ξ2)√

2mξ2
. (5.24)

Setting t to the right-hand side of Eq. (5.24) and substituting into Eq. (5.23), we have that if

n ≥ �2m2

2
22

(
2

D
+ 2.5

D2 + 1 + 10
√

2

D3

)2 (
2mξ4

δ8(1 − ξ2)2

)
log
(

2m2

ε

)

= 8�2m3

(
2

D
+ 2.5

D2 + 1 + 10
√

2

D3

)2 (
ξ4

δ8(1 − ξ2)2

)
log
(

2m2

ε

)

then Eq. (5.24) holds with probability at least 1−ε, and thus the merging step in STDR selects the correct
placeholder edge with high probability. �

5.3 Guarantees for multiple partitions and merging steps

The guarantees in Theorems 5.2 and 5.3 are derived for a single iteration of partitioning and merging.
The following theorem, proved in the appendix, extends these theorems for multiple iterations.

Theorem 5.4. Let T be a tree with m terminal nodes generated according to the molecular clock model.
Let τ be the user defined parameter of the minimum partition. We assume that the provided algorithm
Alg (see Algorithm 1) recovers trees with size up to τ exactly. The number of samples required to obtain
an accurate tree recovery via STDR is of the order of

n = Õ

(
exp(2r(T ))m2

(
(1 + η)3 + m min

{
1,

(1 + η)3

τ 2

}))
. (5.25)

This analysis has important implications on the choice of the smallest partition τ in Algorithm 1. For
balanced trees where η = O(1), the required number of samples is Õ(m2) if τ is at least O(

√
m), but is

Õ(m3) if τ = O(1). Thus on the one hand, reducing τ results in smaller subsets of terminal nodes, which
improves the runtime of the reconstruction step of STDR. On the other hand it may affect the accuracy
of the merging step. Figure 7 shows both runtime and accuracy of STDR as a function of the threshold
parameter τ , when applying STDR with RAxML or SNJ as its subroutine. The data consists of n = 1000
samples generated from a binary symmetric tree with m = 2048 terminal nodes. The accuracy of the
algorithm degrades for small values of τ while the runtime improves by approximately half an order of
magnitude.
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SPECTRAL TOP-DOWN RECOVERY OF LATENT TREE MODELS 21

Fig. 7. Effect of minimal tree size τ on runtime and accuracy of SDTR. Various values of threshold τ were chosen to test the
performance of SDTR method in recovering a binary tree of size 2048 from sequences of length 1000. SNJ and RAxML were
used as the sub method of SDTR.

we compare this result to analogous results for three other methods that recover trees from sequences.
For the comparison, we assume that τ is at least

√
m. For NJ, the sample complexity given in Section

3.3 of [5] is Õ(exp(−4 mini,j ln(S(xi, xj))) or equivalently Õ
(
δ−4r(T )

)
, For a binary symmetric tree

diam(T ) = 2 log2(m) and hence the complexity is O(m8 log2(1/δ)), which is better than (5.25) for δ

close to one, but worse for lower values of δ.
For SNJ, if δ2 > 0.5 the sample complexity is Õ(m2) (by Theorem 4.3 in [26]). This improves

upon Eq. (5.25) due to the additional factor of exp(−r(T )). For the Dyadic Closure method [15,
Theorem 9), the sample complexity is Õ((1/δ)4h(T )), where recall that h(T ) denotes the depth of a
tree as in definition 5.1. For a binary symmetric tree h(T ) = log2(m) in which case the complexity is
O(m4 log2(1/δ)), which improves upon Eq. (5.25) by m2. For highly imbalanced trees (depth(T ) = O(1))
the sample complexity is logarithmic in m. The improved sample complexity, however, comes at cost of
a O(m5) computational complexity.

6. Computational complexity

In this section, we analyze the computational complexity of STDR for trees satisfying the CBM model
described above. First, we analyze the complexity of a single partitioning and merging iteration assuming
that the partitions satisfy some balancedness constraint. Next, we derive the complexity for recovering
a tree via STDR. Finally, we derive the complexity for the worst-case scenario of highly imbalanced
partitions.

Partitioning Given the similarity matrix, partitioning a set of k terminal nodes requires O(k2)

operations, due to the computation of the Fiedler vector of the positive semi-definite Laplacian matrix.
Computing two eigenvectors of an k × k matrix requires O(k2) operations [53, Chapter 2).

Merging Here we analyze the computational complexity of merging two subtrees. For ease of
notations we assume that both subtrees are of equal size k. The same analysis applies for two subtrees
that have less than k nodes. In Lemma 6.1, proved in Appendix J, we show that for two CBM trees with
k nodes and η (defined in Eq. (5.3)) independent of k, the computational complexity of the merging step
is of order O(k2 log k).

Lemma 6.1. Let T1, T2 be two trees with k terminal nodes that satisfy the assumptions of the CBM
model. We assume that for both trees, the parameter η is upper bounded by some constant η0, independent
of k. Then, the computational complexity of merging trees T1 and T2 is O(k2 log k).
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Remark 6.1. Lemma 6.1 can easily be extended for cases where the CBM model assumptions are not
satisfied, as long as all partitions are balanced such that the ratio between the two parts is lower bounded
by some constant.

Next, we use Lemma 6.1 to derive the complexity of multiple merging and partitioning iterations of
STDR, denoted T(m). We note that T(m) does not include the complexity of the subroutine algorithm
that recovers the structure of small trees. Each partitioning step for a CBM tree with m terminal nodes
divides its terminal nodes into sets of sizes αm and (1 − α)m, where we assume that α0 ≤ α ≤ 0.5,
where α0 = 1/(1 + η). Thus, we have that

T(m) ≤ max
α0≤α<0.5

O(m2)︸ ︷︷ ︸
partitioning

+T(αm) + T((1 − α)m) + O(m2 log m)︸ ︷︷ ︸
merging

(6.1)

= max
α0≤α<0.5

T(αm) + T((1 − α)m) + O(m2 log m). (6.2)

In Lemma J.2, we prove that if T(m) satisfies the recursive relation in Eq. (6.1), then

T(m) = O(m2 log m). (6.3)

We denote by B(k) the complexity of recovering the topology of a tree with k terminal nodes by the
given subroutine Alg. Thus, the total complexity of STDR including the recovery of small trees is

O(m2 log m + (m/τ)B(τ )).

Obviously, choosing different subroutines Alg. with different computational complexity will result in
different total computational complexity, and might require different choice of τ . For example, the
complexity of NJ is B(τ ) = O(τ 3). Thus, assuming the partitions satisfy the balancedness condition,
the complexity of STDR + NJ is O(m2 log m + mτ 2), which for τ = O(1) improves upon the O(m3)

complexity of running NJ to recover the full tree. In the simulation section, we show that STDR + NJ
outperforms NJ in accuracy while being about an order of magnitude faster.

Computational analysis in the case of highly imbalanced partitions. The worst-case
scenario is the case of a highly imbalanced tree, such as the caterpillar tree. In this case, the cost of
a single merging iteration of two trees with k terminal nodes each is O(k3). Thus, in such cases there is
no theoretical advantage over NJ in terms of computational complexity.

Remark 6.2. An important property of the STDR algorithm, in terns of actual runtime, is that it is
embarrassingly parallel. Specifically, steps 7 and 8 in Algorithm 1 can be executed in two independent
processes. This may result in up to k parallel processes, where k is the number of partitions.

7. Simulation Results

We illustrate the performance of STDR in comparison to several other algorithms in a variety of simulated
settings. To this end, we generated trees according to the birth death model, and the coalescent model.

In addition, we considered the challenging scenario of the caterpillar tree. In all experiments, the
sequences were generated according to the HKY substitution model [24] with transition-transversion
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ratio of 2, a typical value in the human genome [31]. The mutation rate for the HKY model is specified for
each simulation. The trees were generated with the Dendropy python package [56]. Code for reproducing
the results is available at https://github.com/aizeny/stdr.

We considered the following reconstruction methods: (i) RAxML [51], a standard tool for maximum
likelihood-based tree inference, (ii) neighbour joining (NJ) and (iii) spectral neighbour joining (SNJ).
Recall that STDR requires as input a subroutine alg for the reconstruction of the small trees. Thus,
for comparison, we applied STDR with each of the aforementioned algorithms as the subroutine.
We denote these three methods as (iv) STDR + RAxML, (v) STR + NJ and (vi) STDR + SNJ. A
second input to STDR is the threshold parameter τ , which sets an upper bound for the size of the
small trees. This parameter is specified in the description of each experiment. The accuracy of the
different algorithms is measured by the normalized Robinson-Foulds (RF) distance, defined as the RF
distance [17] between the reconstructed and reference tree divided by 2m − 6. Each experiment was
repeated five times to obtain a mean and standard deviation of the performance and runtime of each
method.

In addition to the above experiments, we compare our merging procedure to TreeMerge [39]. The
results for the caterpillar tree and the comparison to TreeMerge are shown in Appendix K. Finally, for a
symmetric binary tree, we demonstrate how changes in the threshold τ affect the results of STDR.

Implementation remarks To improve the results of STDR, we computed two possible par-
titions C1, C2: (i) A partition that corresponds to a threshold at 0 in the Fiedler vector, and (ii)
a partition that corresponds to the largest gap. In practice, the partition was chosen by method
(i) or (ii), as the one that minimizes the second singular value of S(C1, C2), see Lemma 3.1. To
improve runtime, we apply randomized methods for computing leading singular values and vectors, see
[1, 22, 53].

7.1 Comparison of accuracy and runtime

We generated random binary trees with m = 2048 terminal nodes according to the birth-death model
[52]. We set a birth rate of 0.5 and zero death rate, with mutation rate equal to 0.05. The STDR
threshold was set to τ = 256 for all three methods. Figure 6 shows the accuracy and runtime of the
different methods as a function of the sequence length n. Using STDR with NJ clearly improves upon
the performance of standard NJ both in terms of accuracy and runtime. Compared to SNJ and RAxML,
STDR + SNJ and STDR + RAxML show similar accuracy but with significantly faster runtimes. Similar
results for trees generated according to the coalescent model and the caterpillar model appear in the
appendix.

7.2 Effect of threshold parameter

Our aim in this experiment was to test the impact of the threshold parameter τ on the performance
of STDR. To that end, we created a binary symmetric tree with m = 2048 terminal nodes and
similarity between all adjacent nodes equal to δ = 0.65. The number of samples was set to n =
1000. We then reconstructed the tree via STDR with different subroutines and a range of threshold
values.

Figure 7 shows the normalized RF distance between the recovered trees and the ground truth tree as
a function of the threshold. For both RAxML and SNJ, accuracy slightly improves for higher values of
the threshold. STDR + NJ is not shown in the plot because it is significantly less accurate in this setting.
These results are in accordance with our analysis in Section 5, where we show that the task of merging
trees becomes challenging for small subsets of terminal nodes.
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Fig. A1. Coalescent tree example with 512 terminal nodes

A. Example of Fiedler vector in a coalescent tree

We generated a tree with m = 512 nodes according to the coalescent model, see Figure A1(a). The
transition matrices were set according to the HKY model [24]. We then generated a dataset of nucleotide
sequences of length n = 2000. Figure A1(b) shows the Fiedler vector of the similarity graph estimated
from the dataset. Partitioning the terminal nodes according to the sign pattern of the Fiedler vector yields
two clans.

B. Relation between the partitioning step and the min-cut criterion

Let T be a binary tree and G be its similarity graph, as defined in Section 3.1. The following lemma
shows that partitioning the terminal nodes according to the min-cut criterion yields two clans of T .

Lemma B.1. Let G be the similarity graph of a binary tree T . Let A∗ and B∗ be a partition of the
terminal nodes that minimizes the following min-cut criterion:

(A∗, B∗) ∈ argmin
A,B

CutG(A, B) = argmin
A,B

∑
i∈A,j∈B

S(xi, yj). (B.1)

Then A∗ and B∗ are clans in T .

Proof. Let (x1, x2) be a pair of adjacent terminal nodes. Consider an arbitrary partition of the terminal
nodes into two non-empty subsets, denoted A and B. The two adjacent nodes (x1, x2) can, respectively,
be labeled (A, B), (A, A), (B, A) or (B, B). We show that if A and B each contains nodes besides x1 and
x2, then assigning x1 and x2 to the same subset decreases the value of the min-cut criterion.

Assume without loss of generality that x1 ∈ A, x2 ∈ B. The cut between A and B is equal to

Cut(A, B) ≡
∑

x∈A,x′∈B

S(x, x′) = S(x1, x2) +
∑

x′∈B\{x2}
S(x1, x′) +

∑
x∈A\{x1}

S(x, x2) + S0,
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28 Y. AIZENBUD ET AL.

where

S0 =
∑

x∈A\{x1}
x′∈B\{x2}

S(x, x′)

does not depend on the assignment of x1 and x2. Let h be the unique node that is adjacent to both x1 and
x2. From the multiplicative property of the similarity, we have

Cut(A, B) = S(x1, x2) + S(x1, h)
∑

x′∈B\{x2}
S(h, x′) + S(x2, h)

∑
x∈A\{x1}

S(x, h) + S0.

Without loss of generality, assume that

∑
x′∈B\{x2}

S(h, x′) ≥
∑

x∈A\{x1}
S(x, h). (B.2)

It follows that

Cut(A, B) ≥ S(x1, h)
∑

x∈A\{x1}
S(x, h) + S(x2, h)

∑
x∈A\{x1}

S(x, h) + S0 (B.3)

=
∑

x∈A\{x1}
S(x, x1) +

∑
x∈A\{x1}

S(x, x2) +
∑

x∈A\{x1}
x′∈B\{x2}

S(x, x′) =
∑

x∈A\{x1}
x′∈B∪{x1}

S(x, x′).

Note that the right hand side of Eq. (B.3) equals the value of the cut of the same partition, but with x1
moved from A to B. Thus, the min-cut partition {A∗, B∗} satisfies one of the following:

• x1 and x2 are in the same subset.

• One of A∗ or B∗ equals exactly to {x1} or {x2}.
Next, let C1 and C2 be two adjacent clans. Assume that the terminal nodes of each of the clans are

homogeneous (i.e., they all belong to the same subset, A or B). The same argument for a pair of terminal
nodes carries over to the case of two adjacent homogeneous clans, showing that the minimal cut partition
{A∗, B∗} satisfies one of the following:

• C1 and C2 are in the same subset.

• One of A∗ or B∗ equals exactly C1 or C2.

Let {A, B} be an arbitrary partition of the terminal nodes that does not correspond to two clans in
the tree. Since A and B are not clans, there must be at least two disjoint pairs C1, C2 and C̃1, C̃2 of
homogeneous adjacent subsets, where the nodes in C1 are labeled by A and the nodes in C2 are labeled
by B. By our arguments Cut(A, B) can be reduced by either changing the labels of C1 to B or C2 to A
which implies that {A, B} is not the min-cut partition. Thus, for any min-cut partition {A∗, B∗}, A∗ and
B∗ are clans. �
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C. Supplementary proofs for Section 3

We present here the proofs of Lemmas 3.2 and Lemma 3.3 that are used in Section 3.

Proof of Lemma 3.2. Let C2 be the clan of all the terminal nodes of T that are not in C1. Consider
an edge e(hA, hB) in T1 that partitions C1 into A(e) and B(e). First, assume that e(hA, hB) is the correct
placeholder edge of T1. Then there exists a node h1 in the full tree T that is connected to hA, hB and
to the root node of C2. Removing the edge e(hA, h1) in T separates the subset A(e) from the remaining
nodes in T , which implies that A(e) is a clan in T . By the same argument, B(e) is also a clan in T .

Conversely, assume that A(e), B(e) and C2 are disjoint clans that partition the terminal nodes of T .
Then, there exists a node h1 that connects to the roots of A(e), B(e) and T2. This proves that the edge
e(hA, hB) in T1 is the correct placeholder edge, since it is where the root h1 is inserted. �

Proof of Lemma 3.3. Let C1 = A ∪ B be the terminal nodes of the clan T1 and let h1 be its root. We
denote by C2 the terminal nodes in its adjacent clan. By the multiplicative property of the similarity
function,

S(C1, C2) = S(C1, h1)S(h1, C2).

Combining the above expression with Eq. (3.4) implies that the left singular vector u of S(C1, C2) is
proportional to the vector of similarities S(C1, h1). That is, ∃β ∈ R such that S(C1, h1) = βu. Let e be
an edge in T1 that partitions the terminal nodes into A(e), B(e). The vector S(C1, h1) can be similarly
partitioned into S(A(e), h1) and S(B(e), h1) such that

S(A(e), h1) = βuA(e), S(B(e), h1) = βuB(e). (C.1)

We first prove that if e is the correct placeholder edge of T1, then Eq. (3.5) holds. By Lemma 3.2, if
e is the correct placeholder edge then the root node h1 separates A(e) from B(e). By Eq. (C.1) and the
multiplicative property of the similarity measure, we have

S(A(e), B(e)) = S(A(e), h1)S(h1, B(e)) = uA(e)β
2uT

B(e).

Setting α = β2 proves Eq. (3.5).
Next, we assume that Eq. (3.5) holds for some edge e and prove that e is the correct placeholder edge.

Consider the matrix S(A(e), B(e) ∪ C2). Since h1 is the root of T1,

S(A(e), C2) = S(A(e), h1)S(h1, C2) and S(A(e), h1) = βuA(e)

we have

S(A(e), C2) = βuA(e)S(h1, C2).

Recall that by assumption S(A(e), B(e)) = uA(e)αuB(e). It follows that both matrices S(A(e), B(e))
and S(A(e), C2) are rank one with a left singular vector equal to uA(e). Thus, the concatenated matrix
S(A(e), B(e) ∪ C2) is rank-one. By Lemma 3.1, this implies that A(e) is a clan of the tree T . A similar
argument shows that B(e) is also a clan in T . Since A(e) and B(e) are both clans in T , it follows from
Lemma 3.2 that e is the correct placeholder edge of T1. �
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30 Y. AIZENBUD ET AL.

Fig. D2. Partitioning accuracy vs. number of samples. Comparison between distance based and similarity based partitioning.

D. Comparison to distance based tree partitioning

Let D ∈ R
m×m be a matrix whose elements are the pairwise phylogenetic distances between all terminal

nodes. Given the exact distance matrix, it was shown in [20] that the terminal nodes of a tree can be
partitioned into two clans according to the sign pattern of the leading eigenvector of the following matrix

(I − 11T/m)D(I − 11T/m).

Figure D2 shows the percentage of times the terminal nodes were correctly partitioned into clans by
applying our similarity based approached vs. the distance-based approach derived in [20]. We generated
200 random trees according to the birth-death model with m = 128 terminal nodes. The Figure shows
the ratio of times each method successfully partitioned the tree as a function of the number of samples
with a fixed mutation rate between adjacent nodes of δ = 0.9. The advantage of using the similarity
matrix over the distance matrix is clear.

E. Proof of Lemma 4.1

We begin with several definitions and notations. We denote by G(v, w), T (v, w) the weight between
nodes v and w in a graph G and tree T , respectively. For a tree T , we denote by pathT (v, w) the set of
edges on the path between nodes v and w,

pathT (v, w) = {(ṽ, w̃)| ṽ and w̃ are adjacent nodes on the path between v and w}.

Next, we define the multiplicative weight between two nodes in a tree.
Definition E.1. The multiplicative weight between v and w in a tree T is equal to,

αT (v, w) =
∏

(ṽ,w̃)∈pathT (v,w)

T (ṽ, w̃). (E.1)

For example, let T be a tree whose edge weights are given by the similarity in Eq. (3.2), then the
similarity between two terminal nodes x1, x2 is equal to the multiplicative weight αT (x1, x2). The next
definition concerns a graph with nodes that correspond to a subset of nodes in T , and weights computed
according to (E.1).
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SPECTRAL TOP-DOWN RECOVERY OF LATENT TREE MODELS 31

Definition E.2. Multiplicative subgraphLet T be a tree with a set of nodes V . We say that a graph
G is a multiplicative subgraph with respect to T and a subset of nodes Ṽ ⊂ V if (i) the nodes of G
correspond to Ṽ and (ii) the weight assigned to an edge connecting v, w in G is equal to the multiplicative
weight between v and w in T ,

G(v, w) = αT (v, w).

For convenience, we will sometimes say that G is a multiplicative subgraph of T without explicitly
stating which nodes are included in G. By definition, the similarity graph G is a multiplicative subgraph
with respect to the terminal nodes of T . Note that we use v and w as nodes both in G and in T
interchangeably, since by definition every node in G corresponds to a node in T .

The proof of Lemma 4.1 is constructive. Given a tree T and its similarity graph G, we present an
iterative procedure to build a second tree T̃ , with the same topology as T , but with different weights
such that

LG = LT̃ /R,

where R is the set of all internal nodes in T . Computing T̃ consists of iterative and simultaneous updates
of a graph and a tree: (i) a graph Gi with nodes that correspond to a subset of the nodes in T . The initial
graph G0 is set to G, with only the terminal nodes of T . (ii) A tree Ti, with the same topology as T .
The weights of the initial tree T0 are set such that T0 = T .

At each iteration i, we add one of the non-terminal nodes hi of T (that was not previously added)
to Gi, creating Gi+1. The weights of the new graph Gi+1 are set such that the Schur complement of its
Laplacian matrix with respect to the added node hi is equal to the Laplacian of the previous graph LGi

.

LGi
= LGi+1/hi

. (E.2)

The steps for computing Gi+1 given Gi and Ti are described in Algorithm 2. Next, we compute a new tree
Ti+1 with the same topology as Ti. The weights of Ti+1 are set such that Gi+1 becomes a multiplicative
subgraph with respect to Ti+1. The steps for computing Ti+1 are described in Algorithm 2. At every
iteration i, we maintain an active set of nodes which we denote by Ai. When updating Gi, changes are
only made to edges connecting two nodes in Ai ∪ hi. When updating Ti, changes are only made to edges
on the path between two nodes in the active set. The initial active set A0 is equal to all terminal nodes of
T .

In our proof, we use the following two auxiliary lemmas, that show the correctness of the updating
procedure of Gi and Ti. An implementation of Algorithms 2 and 3 is available on GitHub. The first
lemma proves the correctness of Algorithm 2. The input to Algorithm 2 is the tree Ti, a multiplicative
subgraph Gi and an active set Ai, all of which were computed in the previous iteration. The output of
the algorithm is an updated graph Gi+1 that contains an additional node hi. In addition, the algorithm
updates the active set Ai and creates Ai+1.

Lemma E.1. The output of Algorithm 2 is a graph Gi+1 whose nodes include hi as well as all the
nodes in Gi such that

LGi+1/hi
= LGi

.
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32 Y. AIZENBUD ET AL.

The next lemma concerns the updating procedure of Ti. The input to Algorithm 3 consists of the new
active set Ai+1, and the node hi added to Gi+1. Here, the only changes made are to edges on the path
between hi and the nodes in the active set Ai+1.

Lemma E.2. The tree Ti+1 built according to Algoithm 3 is such that Gi+1 becomes a multiplicative
subgraph of Ti+1.

Figure E3 shows two iterations of the aforementioned process for a tree T with four terminal and
two non-terminal nodes. For simplicity, all the weights of the tree T are set to 1/2.

Proof of Lemma 4.1. We initialize the updating process with a tree T and its similarity matrix G = G0.
By definition, G0 is a multiplicative subgraph of T , and therefore satisfies the condition for Lemma E.1.
The lemma guarantees that after the first update, we obtain a graph G1 with a Laplacian that satisfies,

LG0
= LG1/h0

,

where h0 is the node added to G0 at the first iteration. Lemma E.2 guarantees that G1 is a multiplicative
subgraph of T1. Thus, we can re-apply Algorithm 2 with the pair G1, T1. Thus, at each iteration i, we
obtain a graph Gi+1 that satisfies,

LGi
= LGi+1/hi

. (E.6)
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SPECTRAL TOP-DOWN RECOVERY OF LATENT TREE MODELS 33

Repeating the updating process for all l non-terminal nodes of T yields the graph Gl, which by
construction has the same topology as T . In addition, due to the transitivity of the Schur’s complement
operation, Eq. (E.6) implies that

LTl/R = LGl/R = LGl/{h0,...hl−1} = LGl−1/{h0,...hl−2} = . . . = LG1/h0
= LG0

= LG.

Thus, Tl is a tree with the same topology as T , but with different weights such that LTl/R = LG, which
proves the lemma. �

Proof of Lemma E.1. Assume, for simplicity of notation, that the jth row/column of LG is the row/column
that correspond to hj for any j such that

LG(i, j) = −G(hi, hj) ∀hi, hj ∈ G with i 
= j.

We denote by mj the j-th column of LGi+1
after removing the i-th entry, and by 1 the all one vector. Since

hi is a single node, the Schur complement LGi+1/hi
defined in (4.3) can be simplified to

LGi+1/hi
(j, k) = LGi+1

(j, k) − (1Tmj)(1
Tmk)∑

l 
=i 1Tml

. (E.7)
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34 Y. AIZENBUD ET AL.

Fig. E3. Constructing a tree T2 such that the Schur complement of its Laplacian with respect to the internal nodes is equal to LG.

For a Laplacian matrix, the sum over any row is equal to zero. Since mj is equal to the row of LGi+1
after

removing the i-th entry we have that 1Tmj = −LGi+1
(i, j). We rewrite Eq. (E.7) as,

LGi+1/hi
(j, k) = LGi+1

(j, k) + LGi+1
(j, i)LGi+1

(k, i)∑
l 
=i LGi+1

(i, l)
. (E.8)

The only edges changed between Gi and Gi+1 are edges between nodes in the active set Ai. Thus, if
either hk or hj are not in the active set then LGi+1

(j, k) = LGi
(j, k). In addition, by step 4 of Algorithm
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SPECTRAL TOP-DOWN RECOVERY OF LATENT TREE MODELS 35

2, the added node hi is only connected to nodes in the active set Ai. Thus, if either node hk or hj are
not part of Ai we have LGi+1

(j, i)LGi+1
(k, i) = 0. It follows that in this case LGi+1/hi

(j, k) = LGi
(j, k) as

required.
Next, we assume that both hj and hk are part of the active set Ai. Eqs. (E.3) and (E.5) give

LGi+1
(j, k) = LGi

(j, k) + αTi
(hi, hj)αTi

(hi, hk), LGi+1
(k, i) = −dαTi

(hi, hk). (E.9)

By step 4 of Algorithm 2, hi is only connected to nodes in the active set Ai. Inserting Eq. (E.9) to Eq.
(E.8) gives

LGi+1/hi
(j, k) = LGi

(j, k) + αTi
(hi, hj)αTi

(hi, hk) − d2αTi
(hi, hj)αTi

(hi, hk)∑
x∈Ai

dαTi
(hi, x)

, (E.10)

The denominator in the last term on the r.h.s of Eq. (E.10) is equal to d2 and hence,

LGi+1/hi
(j, k) = LGi

(j, k) + αTi
(hi, hj)αTi

(hi, hk) − d2αTi
(hi, hj)αTi

(hi, hk)
1

d2 = LGi
(j, k).

We conclude that for any element j, k we have LGi+1/hi
(j, k) = LGi

(j, k). �

Proof of Lemma E.2. Here, our task is to prove that the weight assigned to any edge Gi+1(x, y) is equal
to the multiplicative path αTi+1

(x, y). We address three cases: (i) the node x is in the active set Ai+1 and
y is equal to the node hi added to the graph in iteration i. (ii) Both x and y are in Ai+1, and are not equal
to hi, and (iii) x = hi and y is either vi,1 or vi,2. For a pair of nodes (x, y) that is not in (i)− (iii) the edges
in Gi and Ti were not changed in the updating steps.

For case (i) we assume that x is in Ai+1 and y = hi and hence by Eq. (E.3) in Algorithm 2

Gi+1(x, hi) = dαTi
(x, hi).

We denote the nodes on the path between x and hi in Ti by

path(hi, x) = {z1 = hi, z2, . . . , zK = x}.

The edge between hi and z2 is updated according to step 2 of Algorithm 3. The edge between zK−1 and zK
is updated by step 3. The remaining edges are updated by step 4. The multiplicative weight αTi+1

(x, hi)
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36 Y. AIZENBUD ET AL.

in the updated tree Ti+1 according to Algorithm 3 is equal to

αTi+1
(x, hi) =

K−1∏
j=1

Ti+1(zj, zj+1)

= dTi(hi, z2)√
1 − αTi

(z2, hi)
2
×

K−2∏
j=2

Ti(zj, zj+1)

√
1 − αTi

(zj, hi)
2√

1 − αTi
(zj+1, hi)

2

√
1 − αTi

(zK−1, hi)
2Ti(zK−1, x)

= d
K−1∏
j=1

Ti(zj, zj+1) = dαTi
(x, hi). (E.11)

Thus, the weight Gi+1(x, hi) = αTi+1
(x, hi) for any x in the active set.

In case (ii) x, y are two nodes in the active set not equal to hi. According to Eq. (E.5) in Algorithm 2

Gi+1(x, y) = Gi(x, y) − αTi
(hi, x)αTi

(hi, y).

Denote by u the unique node that connects between the nodes x, y and hi. Then,

αTi
(hi, x)αTi

(hi, y) = αTi
(hi, u)2αTi

(u, x)αTi
(u, y) = αTi

(hi, u)2αTi
(x, y). (E.12)

By assumption on the input to Alg. 2 of the previous iteration, the graph Gi is a multiplicative subgraph
of Ti and hence Gi(x, y) = αTi

(x, y). Thus, Eqs (E.5) and (E.12) imply

Gi+1(x, y) = Gi(x, y) − αTi
(hi, u)2αTi

(x, y) = Gi(x, y) − αTi
(hi, u)2Gi(x, y) = Gi(x, y)(1 − αTi

(hi, u)2).

Next, we show that Gi+1(x, y) is equal to the multiplicative weight αTi+1
(x, y). Let z1 = x, . . . , zκ =

u, . . . , zK = y be the nodes on the path between x and y. By steps 2 and 3 in Algorithm 3, the multiplicative
weight αTi+1

(x, y) is equal to

αTi+1
(x, y) =

κ−1∏
j=1

Ti+1(zj, zj+1)

K−1∏
j=κ

Ti+1(zj, zj+1)

= Ti(x, z2)

√
1 − αTi

(z2, hi)
2

κ−1∏
j=2

Ti(zj, zz+1)

√
1 − αTi

(zj+1, hi)
2√

1 − αTi
(zj, hi)

2

× Ti(y, zK−1)

√
1 − αTi

(zK−1, hi)
2

K−2∏
j=κ

Ti(zj, zz+1)

√
1 − αTi

(zj, hi)
2√

1 − αTi
(zj+1, hi)

2
. (E.13)
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Note that

Ti(x, z2)

√
1 − αTi

(z2, hi)
2

κ−1∏
j=2

Ti(zj, zz+1)

√
1 − αTi

(zj+1, hi)
2√

1 − αTi
(zj, hi)

2
=
√

1 − αTi
(zκ , hi)

2
κ−1∏
j=1

Ti(zj, zz+1)

and

Ti(y, zK−1)

√
1 − αTi

(zK−1, hi)
2

K−2∏
j=κ

Ti(zj, zz+1)

√
1 − αTi

(zj, hi)
2√

1 − αTi
(zj+1, hi)

2

=
√

1 − αTi
(zκ , hi)

2
K−1∏
j=κ

Ti(zj, zz+1)

and thus,

αTi+1
(x, y) =

K−1∏
j=1

Ti(zj, zz+1)(1 − αTi
(zκ , hi)

2) = Gi+1(x, y).

Lastly, we consider case (iii), where x = hi and y = vi,1 or y = vi,2. Recall that vi,1, vi,2 are adjacent
to hi in T and were removed from the active set. By step 4 of Algorithm 2 and step 1 of Algorithm
3 the edge Gi(x, y) and its corresponding edge Ti(x, y) have both been updated such that Ti+1(x, y) =
Gi+1(x, y) = dTi(x, y). �

F. Auxiliary Lemmas for Section 5

Proof of Lemma 5.2. We begin by characterizing all the eigenvectors of L ∈ R
m×m. For any non-terminal

node h in the binary symmetric tree T , we denote the set of descendent terminal nodes to the “left” of h
by A, the set of descendant terminal nodes to the ‘right’ of h by B, and the rest of the terminal nodes by
C. Let vh ∈ R

m be a vector with

(vh)i =

⎧⎪⎨⎪⎩
1 i ∈ A

−1 i ∈ B

0 i ∈ C.

We show that for any choice of non-terminal node h, vh is an eigenvector of L. Since there are m − 1
non-terminal nodes, this set of eigenvectors, together with the vector of all-ones, forms the full set of all
eigenvectors of L.

First, we show that vh is an eigenvector of the similarity matrix S, and compute the corresponding
eigenvalue. For i ∈ A,

(Svh)i =
∑
j∈A

S(i, j) −
∑
k∈B

S(i, k).
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Due to the symmetry of the tree T , every terminal node has a similarity of δ2 to one other terminal node,
δ4 to two other terminal nodes, etc. Thus,

∑
j∈A

S(i, j) = 1 + δ2 + 2δ4 + . . . , + . . . , |A|δ2 log2 |A| = δ2

(
1 − (2δ2)log2 |A|

1 − 2δ2

)
+ 1.

The similarity between a node i ∈ A and all nodes k ∈ B is equal to δ2(log |A|+1). Thus,

∑
j∈A

S(i, j) −
∑
k∈B

S(i, k) = δ2

(
1 − (2δ2)log2 |A|

1 − 2δ2

)
+ 1 − |A|δ2(log |A|+1)

= 1 + δ2

(
1 − (2δ2)log |A|(2 − 2δ2)

1 − 2δ2

)
. (F.1)

The same result with a negative sign holds for i ∈ B. If i ∈ C then by symmetry (Svh)i = 0. Thus vh is
an eigenvector of S with eigenvalue equal to the right side of (F.1). The sum of every row in S is equal
to,

di =
∑

j

S(i, j) = 1 + δ2 + 2δ4 + . . . + 2log2 mδ2 log2 m = δ2

(
1 − (2δ2)log2 m

1 − 2δ2

)
+ 1. (F.2)

Let D be the scalar matrix with diagonal elements equal to Eq. (F.2). Combining Eq. (F.2) and Eq. (F.1),
we get that vh is an eigenvector of L = D − S with eigenvalue:

λ(h) = δ2

(
(2δ2)log2 |A|(2 − 2δ2) − (2δ2)log2 m

1 − 2δ2

)
. (F.3)

For any Laplacian matrix 0 is an eigenvalue that correspond to the vector of all-ones. Since the eigenvalue
e(h) decreases as |A| grows, the two smallest non-zero eigenvalues correspond to |A| = m/2 and |A| =
m/4. The three smallest eigenvalues are thus equal to,

λ1 = 0, λ2 = m2 log2(δ)+1, λ3 = m2 log2(δ)+1
(

1

2
+ 1

2δ2

)
.

�
In the following proof, we use similar notations as in the proof of Lemma 5.4.

Proof of Lemma 5.5. For simplicity, let x = ‖S(Ai, B)‖2
F and y = ‖S(Ai+k, B)‖2

F . To compute the
numerator of Eq. (5.14), we set the partial derivative w.r.t. β to 0, which gives

β∗ = argmin
β

(
(1 − βRi)

2x + (1 − βRi+k)
2y
)

= Rix + Ri+ky

R2
i x + R2

i+ky
.
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SPECTRAL TOP-DOWN RECOVERY OF LATENT TREE MODELS 39

Plugging β∗ back into the numerator of Eq. (5.14) gives

min
β

(
(1 − βRi)

2x + (1 − βRi+k)
2y
)

= xy(Ri − Ri+k)
2

R2
i x + R2

i+ky
.

Observe that Ri+k = RiS(hi, hi+k)
2. Thus, the above expression further simplifies to

xy(Ri − Ri+k)
2

R2
i x + R2

i+ky
= xyR2

i (1 − S(hi, hi+k)
2)2

R2
i (x + S(hi, hi+k)

4y)
= xy(1 − S(hi, hi+k)

2)2

x + S(hi, hi+k)
4y

.

Since ‖S(Ai, B)‖2
F + ‖S(Ai+k, B)‖2

F = x + y, the LHS of (5.14) is equal to

xy(1 − S(hi, hi+k)
2)2

(x + y)(x + S(hi, hi+k)
4y)

. (F.4)

Recall from Eqs (2.2) and (3.1) that for any 1 ≤ i ≤ N − 1, S(hi, hi+k) < ξ < 1. It follows that

xy(1 − S(hi, hi+k)
2)2

(x + y)(x + S(hi, hi+k)
4y)

≥ xy(1 − ξ2)2

(x + y)2 ≥ xy(1 − ξ2)2

(2 max(x, y))2 = (1 − ξ2)2 min(x, y)

4 max(x, y)
. (F.5)

Next, we simplify the term min(x,y)
max(x,y) in Eq. (F.5). Note that hi+k separates Ai and Ai+k from B, see

ilustration in Figure 5. Thus, we can rewrite min(x, y) as

min(x, y) = min(‖S(Ai, B)‖2
F , ‖S(Ai+k, B)‖2

F)

= min(‖S(Ai, hi+k)S(hi+k, B)‖2
F , ‖S(Ai+k, hi+k)S(hi+k, B)‖2

F)

= min(‖S(Ai, hi+k)‖2‖S(hi+k, B)‖2, ‖S(Ai+k, hi+k)‖2‖S(hi+k, B)‖2
F)

= min(‖S(Ai, hi+k)‖2, ‖S(Ai+k, hi+k)‖2) · ‖S(hi+k, B)‖2.

Similarly, max(x, y) = max(‖S(Ai, hi+k)‖2, ‖S(Ai+k, hi+k)‖2) · ‖S(hi+k, B)‖2. Thus,

min(x, y)

max(x, y)
= min(‖S(Ai, hi+k)‖2, ‖S(Ai+k, hi+k)‖2)

max(‖S(Ai, hi+k)‖2, ‖S(Ak+1, hi+k)‖2)
.

Next, we provide lower and upper bounds on the terms ‖S(Ai, hi+k)‖2 and ‖S(Ai+1, hi+k)‖2. By Eq. (2.2),
the similarity between the nodes in Ai, Ai+k and hi+k is bounded by ξ . It follows that

max(‖S(Ai, hi+k)‖2, ‖S(Ai+k, hi+k)‖2) ≤ max(|Ai|, |Ai+k|)ξ2 ≤ mξ2. (F.6)
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40 Y. AIZENBUD ET AL.

For a lower bound, we apply [26, Lemma 4.5]. Given the terminal nodes of a clan A, and the root of a
clan h, the lemma bounds the norm of S(A, h) by,

‖S(A, h)‖2
F ≥

{
(2δ2)log |A| δ2 ≤ 0.5

2δ2 δ2 > 0.5
≥
{

(2δ2)log m δ2 ≤ 0.5

2δ2 δ2 > 0.5.

There are k + 1 edges between the root of Ai and hi+k, and one edge between the root of Ai+k and hi+k.
Thus,

min(‖S(Ai, hi+k)‖2, ‖S(Ai+k, hi+k)‖2) ≥
{

(2δ2)log mδ2(k+1) δ2 ≤ 0.5

2δ(2k+2) δ2 > 0.5.
(F.7)

Plugging Eqs (F.6), (F.7) into (F.5) concludes the proof. �

Proof of Lemma 5.6. The lemma is a small variation over the known lower bound for ratio of sums,∑
i ai∑
i bi

≥ mini
ai
bi

. For an even number of elements, we can merge non overlapping pairs of consecutive

elements such that ãi = a2i + a2i+1 and b̃i = b2i + b2i+1. Applying the standard bound for ratio of sums
for ãi and b̃i gives, ∑

i ãi∑
i b̃i

≥ min
i

ãi

b̃i

= min
i

a2i + a2i+1

b2i + b2i+1
≥ min

i 
=j;|i−j|≤2

ai + aj

bi + bj
.

For an odd number of elements, we can merge the first three elements i = 0, 1, 2. The rest will be merged
into consecutive pairs.

∑
i ai∑
i bi

≥ min

{
a0 + a1 + a2

b0 + b1 + b2
,

∑
i≥2(a2i + a2i+1)∑
i≥2(b2i + b2i+1)

}

The ratio for elements i = 0, 1, 2 can be bounded by the minimum ratio over all pairs i, j ∈ {0, 1, 2}.
Thus, ∑

i ai∑
i bi

≥ min

{
min

i 
=j∈{0,1,2}
ai + aj

bi + bj
,

∑
i≥2(a2i + a2i+1)∑
i≥2(b2i + b2i+1)

}
≥ min

i 
=j;|i−j|≤2

ai + aj

bi + bj
�

Lemma F.1. Let X, X′ ∈ R
m×n and let y, y′ > 0. Assume that ‖X′‖F ≤ y′, then

∥∥∥X

y
− X′

y′
∥∥∥

F
≤ 1

y
(‖X − X̂‖F + |y − ŷ|). (F.8)

Proof. By definition,

∥∥∥X

y
− X̂

ŷ

∥∥∥
F

=
∥∥∥Xy′ − X′y

yy′
∥∥∥

F
=
∥∥∥y′(X − X′)

yy′ + X′(y′ − y)

yy′
∥∥∥

F
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SPECTRAL TOP-DOWN RECOVERY OF LATENT TREE MODELS 41

By the triangle inequality

∥∥∥X

y
− X̂

ŷ

∥∥∥
F

≤ 1

y
‖X − X′‖F + |y′ − y|

y
· ‖X′‖F

y′

Since ‖X′‖F ≤ y′ the lemma follows. �
Lemma F.2. Let X and Y be two matrices and let X̂ and Ŷ be their corresponding noisy estimates.

Then, ∣∣‖X − Y‖F − ‖X̂ − Ŷ‖F

∣∣ ≤ ‖X − X̂‖F + ‖Y − Ŷ‖F .

Proof. Assume that ‖X − Y‖F ≥ ‖X̂ − Ŷ‖F . In this case

∣∣‖X − Y‖F −‖X̂ − Ŷ‖F

∣∣ = ‖X − Y‖F −‖X̂ − Ŷ‖F ≤ ‖X − Y − X̂ + Ŷ‖F ≤ ‖X − X̂‖F +‖Y − Ŷ‖F .

Alternatively, if ‖X − Y‖F ≤ ‖X̂ − Ŷ‖F we have

∣∣‖X − Y‖F −‖X̂ − Ŷ‖F

∣∣ = ‖X̂ − Ŷ‖F −‖X − Y‖F ≤ ‖X̂ − Ŷ − X + Y‖F ≤ ‖X̂ − X‖F +‖Ŷ − Y‖F .
�

Lemma F.3. Let X ∈ R
n1×n2 , Y ∈ R

n2×n3 , Z ∈ R
n3×n4 be three matrices and let X̂, Ŷ , Ẑ be there

corresponding estimates. Then

‖XYZ − X̂ŶẐ‖F ≤ ‖X‖F‖Y‖F‖Z − Ẑ‖F + ‖Ẑ‖F‖Y‖F‖X − X̂‖F + ‖Ẑ‖F‖X̂‖F‖Y − Ŷ‖F

Proof.

‖XYZ − X̂ŶẐ‖F = ‖XYZ − XYẐ + XYẐ − X̂ŶẐ‖F ≤ ‖X‖F‖Y‖F‖Z − Ẑ‖F + ‖Ẑ‖F‖XY − X̂Ŷ‖F
(F.9)

Focusing on ‖XY − X̂Ŷ‖F we have that

‖XY − X̂Ŷ‖F = ‖XY − X̂Y + X̂Y − X̂Ŷ‖F ≤ ‖X − X̂‖F‖Y‖F + ‖X̂‖‖Y − Ŷ‖F

Combining the two bounds gives,

‖XYZ − X̂ŶẐ‖F ≤ ‖X‖F‖Y‖F‖Z − Ẑ‖F + ‖Ẑ‖F‖Y‖F‖X − X̂‖F + ‖Ẑ‖F‖X̂‖F‖Y − Ŷ‖F �
Lemma F.4. Let S denote a rank one matrix and Ŝ its noisy estimate. We denote by u, û their respective

leading left singular vectors. If ‖S − Ŝ‖F ≤ 0.5‖S‖F then

‖uuT − ûûT‖2
F ≤ 50‖S − Ŝ‖2

F

‖S‖2
F

.
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42 Y. AIZENBUD ET AL.

Proof.

‖uuT − ûûT‖2
F =

∑
ij

(uuT − ûûT)2
ij =

∑
ij

(uuT)2
ij +

∑
ij

(ûûT)2
ij − 2

∑
ij

(uuT)ij(ûûT)ij

= ‖u‖4 + ‖û‖4 − 2
∑

i

uiûi

∑
j

ujûj = 2(1 − (uT û)2) = 2 sin2(u, û). (F.10)

We apply a variant of the Davis-Kahan theorem for non square matrices [62, Theorem 3). The
perturbation of the leading singular vector is bounded by

sin(u, û) ≤ 2(2σ1(S) + ‖S − Ŝ‖)‖S − Ŝ‖
σ 2

1 (S) − σ 2
2 (S)

,

where σ1(S) and σ2(S) are the two leading singular values of S. Since S is rank one, σ1(S) = ‖S‖ = ‖S‖F

and σ2(S) = 0. In addition, we assumed that ‖S − Ŝ‖F ≤ 0.5‖S‖F and hence

sin(u, û) ≤ 5‖S‖F‖S − Ŝ‖F

‖S‖2
F

= 5‖S − Ŝ‖F

‖S‖F
. (F.11)

Combining Eqs (F.10), (F.11) concludes the proof. �

Proof of Lemma 5.8. Let d(e) denote the score of the edge e computed by the exact similarity matrix S
as defined in (3.6). We denote by d̂(e) the score computed by the noisy estimate of the similarity Ŝ. The
difference between d(e) and d̂(e) is equal to

|d(e) − d̂(e)| =
∣∣∣∣∣‖S(A, B) − α∗uAuT

B‖F

‖S(A, B)‖F
− ‖Ŝ(A, B) − β∗ûAûT

B‖F

‖Ŝ(A, B)‖F

∣∣∣∣∣ , (F.12)

where,

α∗ = argmin
α

‖S(A, B) − αuAuT
B‖F β∗ = argmin

β

‖Ŝ(A, B) − βûAûT
B‖F .

We apply Lemma F.1 with

X = ‖S(A, B) − α∗uAuT
B‖F , y = ‖S(A, B)‖F , X̂ = ‖Ŝ(A, B) − β∗ûAûT

B‖F , ŷ = ‖Ŝ(A, B)‖F ,

where we note that here X and X̂ are scalars. Lemma F.1 requires that 0 < |X̂| ≤ ŷ, which holds trivially.
Applying Lemma F.1 to (F.12) yields,

|d(e) − d̂(e)| ≤ 1

‖S(A, B)‖F

(∣∣∣‖S(A, B) − α∗uAuT
B‖F − ‖Ŝ(A, B) − β∗ûAûT

B‖F

∣∣∣
+∣∣‖S(A, B)‖F − ‖Ŝ(A, B)‖F

∣∣) . (F.13)
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SPECTRAL TOP-DOWN RECOVERY OF LATENT TREE MODELS 43

Next, setting X = S(A, B), X̂ = Ŝ(A, B), Y = α∗uAuT
B and Ŷ = β∗ûAûT

B, by Lemma F.2,

|d(e) − d̂(e)| ≤ 1

‖S(A, B)‖F

(
‖S(A, B) − Ŝ(A, B)‖F + ‖α∗uAuT

B − β∗ûAûT
B‖F

+∣∣‖S(A, B)‖F − ‖Ŝ(A, B)‖F

∣∣)
≤ 1

D

(
2‖S(A, B) − Ŝ(A, B)‖F + ‖α∗uAuT

B − β∗ûAûT
B‖F

)
. (F.14)

where the second inequality is due to the reverse triangle inequality and the definition of D .
We focus on the term ‖α∗uAuT

B −β∗ûAûT
B‖F in Eq. (F.14). The values of α∗, β∗ are obtained via least

square between the elements of S(A, B), Ŝ(A, B) and uAuT
B, ûAûT

B, respectively. For α∗, the least squares
solution is

α∗ = 1

‖S(A, B)‖2
F

∑
i,j

S(A, B)ij(uAuT
B)ij = 1

‖S(A, B)‖2
F

uT
AS(A, B)uB, (F.15)

where a similar expression holds for β∗. Multiplying α∗ and β∗ by uAuT
B and ûAûT

B gives,

α∗uAuB − β∗ûAûB = 1

‖S(A, B)‖2
F

uAuT
AS(A, B)uBuT

B − 1

‖Ŝ(A, B)‖2
F

ûAûT
AŜ(A, B)ûBûT

B. (F.16)

Next, we apply Lemma F.1 with X = uAuT
AS(A, B)uBuT

B, y = ‖S(A, B)‖2
F , X̂ = ûAûT

AŜ(A, B)ûBûT
B and

ŷ = ‖Ŝ(A, B)‖2
F . The condition for Lemma F.1 is that ‖X̂‖F ≤ ŷ, which holds since

‖X̂‖F = ‖ûAûT
AŜ(A, B)ûBûT

B‖F ≤ ‖ûAûT
A‖F‖Ŝ(A, B)‖F‖ûBûT

B‖F ≤ ‖Ŝ(A, B)‖F = ŷ.

Applying Lemma F.1 to (F.16) gives

‖α∗uAuB − β∗ûAûB‖F ≤ 1

‖S(A, B)‖2
F

(
‖uAuT

AS(A, B)uBuT
B − ûAûT

AŜ(A, B)ûBûT
B‖F .

+∣∣‖S(A, B)‖2
F − ‖Ŝ(A, B)‖2

F

∣∣) . (F.17)

Denote

ε(A, B) =Ŝ(A, B) − S(A, B) ε(C1, C2) = Ŝ(C1, C2) − S(C1, C2)

εA =ûAûT
A − uAuT

A εB = ûBûT
B − uBuT

B.

Equipped with the above notations, we bound the first term in the numerator of Eq. (F.17) using Lemma
F.3 where X = uAuT

A, Y = S(A, B), and Z = uBuT
B,

‖uAuT
AS(A, B)uBuT

B − ûAûT
AŜ(A, B)ûBûT

B‖F

≤ ‖uAuT
A‖F‖S(A, B)‖F‖εB‖F + ‖ûBûT

B‖F‖S(A, B)‖F‖εA‖F + ‖ûBûT
B‖F‖ûAûT

A‖F‖ε(A, B)‖F
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44 Y. AIZENBUD ET AL.

Since ‖uAuT
A‖F , ‖ûBûT

B‖F ≤ 1 we get,

‖uAuT
AS(A, B)uBuT

B − ûAûT
AŜ(A, B)ûBûT

B‖F ≤ ‖S(A, B)‖F(‖εA‖F + ‖εB‖F) + ‖ε(A, B)‖F . (F.18)

The matrices εA, εB are submatrices of ûûT −uuT and hence ‖εA‖F , ‖εB‖F ≤ ‖ûûT −uuT‖F . Applying
Lemma F.4 gives

‖εA‖F + ‖εB‖F ≤ 2‖uuT − ûûT‖F ≤ 10
√

2‖ε(C1, C2)‖F

‖S(C1, C2)‖F
≤ 10

√
2‖ε(C1, C2)‖F

D
. (F.19)

Combining Eqs (F.14), (F.17),(F.18) and (F.19) yields

|d(e) − d̂(e)| ≤ 1

D

(
2‖ε(A, B)‖F + 1

‖S(A, B)‖2
F(∣∣‖S(A, B)‖2

F − ‖Ŝ(A, B)‖2
F

∣∣+ ‖ε(A, B)‖F + 10
√

2‖S(A, B)‖F‖ε(C1, C2)‖F

D

))
. (F.20)

We have that∣∣‖S(A, B)‖2
F − ‖Ŝ(A, B)‖2

F

∣∣ = ∣∣‖S(A, B)‖F − ‖Ŝ(A, B)‖F

∣∣(‖S(A, B)‖F + ‖Ŝ(A, B)‖F)

≤ 2.5‖ε(A, B)‖F‖S(A, B)‖F , (F.21)

where the inequality is due to the reverse triangle inequality and our assumption ‖ε(A, B)‖F ≤
0.5‖S(A, B)‖F which implies ‖Ŝ(A, B)‖F ≤ 1.5‖S(A, B)‖F . Combining (20) and (F.21), we get

|d(e) − d̂(e)| ≤ 1

D

(
2‖ε(A, B)‖F + 1

‖S(A, B)‖2
F

×
(

‖ε(A, B)‖F

(
2.5‖S(A, B)‖F + 1

)+ 10
√

2‖ε(C1, C2)‖F‖S(A, B)‖F

D

))

≤ ‖ε(A, B)‖F

(
2

D
+ 2.5

D2 + 1

D3

)
+ ‖ε(C1, C2)‖F

10
√

2

D3

≤ ‖S − Ŝ‖F

(
2

D
+ 2.5

D2 + 1 + 10
√

2

D3

)
,

which concludes the proof. �

G. The value of D

In our analysis, we provide in Theorem 5.3 a finite sample guarantee for the merging step. Given two
trees T1, T2 with terminal nodes C1, C2, our goal is to find the correct merging edge e∗(A, B) in T1
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SPECTRAL TOP-DOWN RECOVERY OF LATENT TREE MODELS 45

Fig. G4. Illustration of D for balanced binary and caterpillar trees.

where A ∪ B = C1. The obtained guarantee depends on the value of D , given by

D = min{‖S(A, B)‖F , ‖S(C1, C2)‖F}.

For trees that are balanced, this value is of order of m2. For illustration, consider the case of a balanced
binary tree, illustrated on the left panel of Figure G4. For this case, the number of elements of S(A, B) is
m2/16. Assuming that all edges have similarity δ, the value of each element is δ2 log m. On the right panel,
we illustrate the case of a caterpillar tree, here the number of elements in both S(C1, C2) and S(A, B) is
linear in m.

H. Proof of Lemma 5.3

Theorem 5.2 guarantees that for n large enough, the partitioning step yields T1 and T2 that both satisfy
the molecular clock model. By the definition of η, the number of terminal nodes |C1|, |C2| in both trees
is at least m/(1 + η).

Consider the matrix S(C1, C2) that contains the similarity between the terminal nodes of T1, T2.
Under the assumption of the molecular clock, the matrix S(C1, C2) is constant, with values exp(−r(T )).
Thus,

‖S(C1, C2)‖F = exp(−r(T ))
√|C1||C2|.

Assume that the ratio |C1|/|C2| = η12. In that case

|C1||C2| = η12m2

(1 + η12)
2 .

Since the right-hand side is monotonically decreasing for η12 > 1, and η12 ≤ η. Then,

|C1||C2| ≥ ηm2

(1 + η)2 .

and thus,

‖S(C1, C2)‖F ≥ exp(−r(T ))

√
ηm

1 + η
.
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For S(A, B), we replace m with the lower bound on the size |A ∪ B| = |C1| ≥ m/(1 + η). The diameter
of the new tree whose terminal nodes are A ∪ B is at most r(t) − 2 log(δ) and hence,

‖S(A, B)‖F ≥ exp(−r(T ))

δ2

√
η max

{
1,

m

(1 + η)2

}
.

The two bounds for ‖S(A, B)‖F and ‖S(C1, C2)‖F yield

D ≥ exp(−r(T ))
√

η max
{

1,
m

(1 + η)2

}
.

I. Proof of Theorem 5.4

The guarantees for a single partition and merging step presented in Theorems 5.2 and 5.3 are based on the
respective two lemmas 5.7 and 5.1 that provide a guarantee for STDR under the condition on the accuracy
‖S − Ŝ‖. Let C1, C2 denote the first partition. For any additional partition and merging iterations (say
(C11, C12), (C21, C22) etc.), similar guarantees hold for the submatrix ‖S(C1, C2) − Ŝ(C1, C2)‖. Note,
that for any submatrix S(C1, C2) of S,

‖S(C1, C2) − Ŝ(C1, C2)‖ ≤ ‖S − Ŝ‖.

However, the expressions in the two bounds in Lemmas 5.7 and 5.1 depend on parameters such as
r(T ), h(T ) (for the partitioning step) and D (for the merging step), which might be different for the
subtrees. Thus, our goal is to further develop the bounds in the two lemmas such that they hold for
any subtree that is partitioned during the STDR algorithm. We do so separately for the partitioning and
merging steps.

Partitioning step. Lemma 5.1 guarantees that the partitioning step is accurate if

‖S − Ŝ‖ ≤
√

me−r(T )

√
η23/2(

√
m + 1)

min
{

1,
1

1 + η

(
er(T )−h(T ) − 1

)}
.

For the molecular lock model, h(T ) is the distance between the terminal nodes and the root, and thus
r(T ) = 2h(T ). The expression exp(h(T )) is the inverse of the similarity between the terminal nodes
and the root which is bounded by 1/ξ . Thus,

er(T )−e(h(T )) − 1 = eh(T ) − 1 ≥ exp(− log ξ) − 1 = 1 − ξ

ξ
.

In addition, e−r(T ) ≤ e−r(T (C1)) for any subtree T (C1) of T . Thus, if ‖S − Ŝ‖ satisfies

‖S − Ŝ‖ ≤
√

me−r(T )

√
η23/2(

√
m + 1)

1 − ξ

ξ(1 + η)
,

then the partitioning step is guaranteed to yield an accurate partition for all STDR iterations.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/12/3/iaad032/7243094 by N
ew

 York U
niversity user on 25 August 2023



SPECTRAL TOP-DOWN RECOVERY OF LATENT TREE MODELS 47

Merging step. The allowed error in the estimate of S is equal to

‖S − Ŝ‖F ≤ 1

2

(
2

D
+ 2.5

D2 + 1 + 10
√

2

D3

)−1
δ3(1 − ξ2)√

2mξ2
,

The only parameter that decreases as we move from the full tree to a subtree is the value of D . We use
Lemma 5.3, which bounds the value of D , for a tree of size m via,

D ≥ exp(−r(T )) max
{

1,
√

ηm

(1 + η)2

}
.

Here, we replace m with τ—the user provided parameter for the minimal tree size to be partitioned.
Thus, for guaranteed merging correctness for all partitions we have,

‖S − Ŝ‖F ≤ 1

2

(
2

D(τ )
+ 2.5

D(τ )2 + 1 + 10
√

2

D(τ )3

)−1
δ3(1 − ξ2)√

2mξ2
,

where

D(τ ) = exp(−r(T )) max
{

1,
√

ητ

(1 + η)2

}
.

Combining these results with the probabilistic bound on the estimate Ŝ in Eq. (5.12) (partitioning) and
(5.22) (merging) conclude the proof.

J. Proof of merging complexity

Proof of Lemma 6.1. The complexity of merging two subtrees with k terminal nodes each is composed
of two parts:

1. Compute the leading singular vector of the matrix S(C1, C2) ∈ R
k×k, which takes O(k2)

operations.

2. Compute the score for every edge as in Eq. (3.6). The number of operations required for the
least-squares operation in the numerator of Eq. (3.6), as well as computing the Frobenius norms
in the numerator and denominator is proportional to the number of elements in S(A(e), B(e)).
Thus, the total complexity of computing the score for all edges in T1 (and similarly T2) is
O(
∑

e∈T1
|A(e)||B(e)|).

3. In Lemma J.1 we prove that for any tree T1 with k terminal nodes that follows the CBM model
with η bounded from below by η0,

∑
e∈T |A(e)||B(e)| = O(k2 log k).

Thus, the total computational complexity of the merging is O(k2 log k) as well, which concludes the
proof. �

Lemma J.1. Let T be the set of trees with k terminal nodes that follows the CBM model with η

bounded from below by η0. Denote C(k) = maxT ∈T
∑

e∈T |A(e)||B(e)|. Then, C(k) = O(k2 log k).
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Proof. For a tree T , we denote C̃(T ) =∑e∈T |A(e)||B(e)|, and note that C(k) = maxT ∈T C̃(T ). We
also denote �̃(T ) is the sum for every edge we add the number of leaves that are not on the side of the
root, explicitly,

�̃(T ) =
∑
e∈T

|A(e)|.

We have the following recurrence formula for �(T ) given that T is split to T1 and T2:

�̃(T ) = �̃(T1) + �̃(T2) + |T1| + |T2| = �̃(T1) + �̃(T2) + |T |,

where |T | denotes the number of terminal nodes in T .
Given �(T1) and �(T2), C(T ) can be written as

C̃(T ) = 2|T1||T2| +
∑
e∈T1

|AT1
(e)|(|BT1

(e) + |T2|) +
∑
e∈T2

|AT2
(e)|(|BT2

(e) + |T1|)

= 2|T1||T2| + C̃(T1) + �̃(T1)|T2| + C̃(T2) + �̃(T2)|T1|

Next, we define �(k) = maxT ∈T �̃(T ). From Lemma J.3 we have that �(k) ≤ c�k log k for some
c� ∈ R.

Now, we prove that C(k) < cck2 log k. From the definition of C(k), we have that

C(k0) = max
T ∈T

C̃(T ) = max
T1,T2

(
2|T1||T2| + C̃(T1) + �̃(T1)|T2| + C̃(T2) + �̃(T2)|T1|

)
≤ max

α0≤α<0.5

(
2α(1 − α)k2

0 + C(αk0) + �(αk0)(1 − α)k0 + C((1 − α)k0) + �((1 − α)k0)αk0

)
From Lemma J.3, we have,

C(k0) ≤ max
α0≤α<0.5

(
C(αk0) + C((1 − α)k0) + ck2

0 log k0

)
,

for some c ∈ R. Using Lemma J.2 we conclude the proof. �
Lemma J.2. Let C(k) be a function that satisfies the recurrence equation

C(k) ≤ max
α0≤α<0.5

C(αk) + C((1 − α)k) + ck2 log k

for some 0 < α0 ≤ 0.5 independent of k. Then C(k) = O(k2 log k).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/12/3/iaad032/7243094 by N
ew

 York U
niversity user on 25 August 2023



SPECTRAL TOP-DOWN RECOVERY OF LATENT TREE MODELS 49

Proof. We prove this by induction. The base of the induction is trivial since for small k, there is always
a constant Cc such that C(k) ≤ Cck2 log k. Assume for all k < k0 we have that C(k) ≤ Cck2 log k. Then,

C(k0) ≤ max
α0≤α<0.5

C(αk) + C((1 − α)k) + ck2 log k

≤ max
α0≤α<0.5

Ccα
2k2

0 log(αk0) + Cc(1 − α)2k2
0 log((1 − α)k0) + ck2

0 log k0

≤ k2
0 max

α0≤α<0.5
(Ccα

2 + Cc(1 − α)2 + c) log k0 + Ccα
2 log(α) + Cc(1 − α)2 log(1 − α).

For large enough Cc we have that C(k0) ≤ Cck2
0 log k0, which concludes the proof. �

Lemma J.3. �(k) = O(k log k), or, explicitly, there is c� ∈ R such that

�(k) = c�k log k

Remark J.1. In case the tree is split at each level with ratio exactly η, the value of �(k) can be derived
directly from the Akra-Bazzi method [2].

Proof. We prove this by induction. The base of the induction, the proof is trivial. Assume �̃(k)) ≤
c�k log k for all k < k0 we show that �̃(k0) ≤ c�k0 log k0.

�̃(k0) = max �(T) = max
T1,T2

(
�(T1) + �(T2) + k0

) ≤ max
α0≤α<0.5

(
(̃�(αk0) + (̃�((1 − α)k0)

)
+ k0

using the induction assumption, we have

�̃(k0) ≤ max
α0≤α<0.5

(
c�αk0 log(αk0)) + c�(1 − α)k0 log((1 − α)k0)

)+ k0.

It is easy to check that the maximum is achieved when α = α0, and then

�̃(k0) ≤ (c�α0k0 log(α0k0)) + c�(1 − α0)k0 log((1 − α0)k0)
)+ k0,

or,

�̃(k0) ≤ c�k0

(
α0 log(α0k0)) + (1 − α0) log((1 − α0)k0) + 1

c�

)
(J.1)

= c�k0

(
α0(log(α0) + log k0) + (1 − α0)(log(1 − α0) + log k0) + 1

c�

)
(J.2)

= c�k0

(
log k0 + α0(log(α0)) + (1 − α0)(log(1 − α0)) + 1

c�

)
(J.3)

= c�k0 log k0 + c�k0

(
α0(log(α0)) + (1 − α0)(log(1 − α0)) + 1

c�

)
. (J.4)
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Fig. K5. Trees generated according to Kingman’s coalescent model with m = 2000 terminal nodes. The mean and standard
deviation of the normalized RF distance (left) between the reconstructed tree and the input tree and of the runtime (right) are
shown for each method over five independent runs.

Since there is c� such that α0(log(α0)) + (1 − α0)(log(1 − α0)) + 1
c�

≤ 0 we have that

�̃(k0) ≤ c�k0 log k0,

which concludes the proof. �

K. Additional Simulation Results

K.1 Kingman’s coalescent model

We generated a random tree according to Kingman’s coalescent model [33] with m = 2000 terminal
nodes (see example in Fig A1). Figure K5 shows the accuracy (left panel) and the runtime (right panel)
of the different methods as functions of the sequence length. The threshold parameter τ was set to 128
for all experiments. Here, STDR + RAxML performs similarly to RAxML in accuracy while achieving
more than an order-of-magnitude reduction in runtime. Compared to NJ and SNJ, STDR + NJ and STDR
+ SNJ show improvement in both accuracy and runtime.

K.2 Caterpillar tree

We generated a caterpillar tree with m = 512 terminal nodes, where the non-terminal nodes form a path
graph. The similarity between each pair of adjacent nodes was set to δ = 0.81. As in Section 7, we
compare NJ, SNJ and RAxML, with STDR where the aforementioned methods are used as subroutines.
The STDR threshold is set to τ = 64 for all three STDR variants. Figure K6 shows the normalized RF
distance (left) and runtime (right) of the different methods as functions of the sequence length n. Here,
all three methods are significantly improved when combined with STDR in both runtime and accuracy.

K.3 Comparison to TreeMerge

Here we compare the performance of STDR with RAxML as a subroutine to TreeMerge [39]. First,
we generated random trees with 2000 terminal nodes according to the coalescent model. The trees were
recursively partitioned by STDR with a threshold of τ = 128. The structure of the different partitions was
recovered by RAxML. We compared STDR’s merging criteria with TreeMerge [39] for various sequence
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Fig. K6. A caterpillar tree with m = 512 terminal nodes. The mean and standard deviation of the runtime (right) and RF distance
between the reconstructed tree and the input tree (left) are shown for each method over five independent runs.

Fig. K7. A coalesent tree with m = 2000 terminal nodes. The mean and standard deviation of the normalized RF distance (left)
between the reconstructed tree and the input tree and of the runtime (right) are shown for each method over five independent runs.

Fig. K8. A birth-death tree with m = 100 terminal nodes. The mean and standard deviation of the normalized RF distance (left)
between the reconstructed tree and the input tree and of the runtime (right) are shown for each method over five independent runs.

lengths. The results are shown in Figure K7. The merging process of STDR achieved slightly better
accuracy than TreeMerge, with a significantly reduced runtime. Next, we repeated the same experiment,
but with a birth-death tree with birth rate of 0.5 and death rate of 0. We used m = 100 terminal nodes.
Even for such small trees the merging of STDR improves over TreeMerge in both, reconstruction error
and running time. The results are shown in Figure K8.
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